自然语言处理基础知识入门(五) ELMo模型详解

请添加图片描述

前言

https://arxiv.org/pdf/1802.05365v2 原始论文链接

在之前的章节中,深入讨论了 Word2vec 模型对自然语言处理领域的深远影响。以及讲解了大名鼎鼎的变形金刚Transformer对多模态技术发展的影响,虽然按照逻辑顺序,接下来的章节应该是学习 Bert 模型,但是为了在学习Bert过程中能够与 ELMo 进行深入对比并且保持学习过程中的连贯性,本章节将先行讲解 ELMo 模型。

ELMo 模型与传统的 Word2vec 模型之间的一个关键区别是其有能力在于解决多义词问题。Word2vec 模型在训练完成后,简单的索引操作就足以获得单词的嵌入表示;然而,在真实语境中,同一个词在不同的上下文中可能代表完全不同的概念。这种静态的词嵌入处理方式并不能真正贴合人类对词义随上下文变换的直观理解。因此,ELMo 的诞生正是为了弥补这一不足,它通过分析单词的上下文信息来适当调整该词的嵌入表示,使得模型能够更加精准地捕捉词义的动态变化。

一、ELMo

按照惯例,首先对ELMo模型给出一个简单直白的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这个男人是小帅

请小弟喝杯咖啡☕️鼓励下吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值