基于聚类分析的共享单车租赁数量预测研究

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

项目介绍

本研究以华盛顿特区Capital Bikeshare系统为研究对象,分析了2011至2012年间的历史数据。该数据集涵盖了环境和季节等多方面因素对共享单车租赁行为的影响,包括天气状况、季节变化等基本信息,以及更为详细的数据字段,为深入分析提供了丰富素材。通过严格的数据预处理,包括异常值处理、空值填补和数据归约等步骤,本研究确保了数据集的质量和可靠性,为后续的结构化数据分析、聚类分析和预测模型构建奠定了基础。

研究采用多维度的数据分析方法,从时间和空间等角度探索共享单车租赁活动的内在规律。运用K-means聚类算法,结合手肘法和层次系数,确定了最佳聚类数,揭示了租赁活动的多样性和复杂性。通过多种可视化技术,如柱状图、小提琴图和面积图,直观展示了不同聚类下的数据分布,深入分析了影响租赁数量的关键因素,为理解共享单车使用模式提供了新的洞见。

在预测模型构建方面,考虑到数据集的时间序列特征,研究采用了长短期记忆网络(LSTM)模型进行租赁数量预测。通过数据划分和适当的缩放处理,建立了基于深度学习的时间序列预测模型。模型训练采用迭代参数调整和优化算法,以提高预测的准确性和稳定性。通过损失函数和均方误差评估,全面评价了模型性能,并利用可视化技术对比了预测结果与实际值,验证了模型的有效性。

本研究不仅为共享单车系统的运营管理提供了科学决策支持,也为未来交通规划和城市发展提供了宝贵参考。通过多角度分析和先进的预测技术,研究深化了对共享单车使用模式的理解,为优化城市交通系统和提升公共服务质量提供了新的思路和方法。

在这里插入图片描述

引言

研究背景

城市化进程加剧了交通压力,共享单车系统因其环保、便捷的特点成为可持续交通解决方案的重要组成部分。这种系统不仅缓解交通压力、减少污染,还促进公众健康,提升城市生活质量。共享单车产生的大量数据为城市规划提供了新机遇,但数据的复杂性和多维性也带来了分析挑战。

本研究旨在探索共享单车使用规律,分析影响租赁行为的关键因素,并建立预测模型。研究从时间、空间、环境等多维度出发,综合考察系统的动态特性。通过对实际使用数据的深入分析,本研究希望为共享单车系统的规划、运营与管理提供科学依据,推动城市交通系统的可持续发展。

国内外研究现状

国内外在共享单车需求预测、调度优化、出行特征分析等方面进行了广泛的研究,形成了一系列的研究成果。
Changxi Ma和Tao Liu通过设计组合深度学习模型探讨了如何解决共享单车的"最后1公里"问题

研究目的

研究意义

相关技术理论介绍

在这里插入图片描述

研究思路

本研究聚焦华盛顿特区Capital Bikeshare系统2011至2012年的数据,探讨多因素对共享单车租赁的影响。通过严格的数据预处理,确保了分析基础的可靠性。研究采用K-means聚类算法,结合多种可视化技术,揭示了租赁行为的多样性和复杂性。

进一步,研究构建了基于LSTM的时间序列预测模型,通过参数优化和性能评估,验证了模型的有效性。这种综合方法不仅深化了对共享单车使用模式的理解,也为系统优化和城市交通规划提供了科学依据。

本研究展示了一种系统性的共享经济服务研究范式,对理论和实践均有重要贡献。

数据集介绍

本研究基于华盛顿特区Capital Bikeshare系统2011至2012年的数据集,由Hadi Fanaee-T博士整理。数据集包含10886条记录,涵盖日期时间、季节、节假日、天气等多个维度,为研究城市交通和环境问题提供了宝贵资源。

数据字段包括日期时间、季节(1-4表示)、节假日和工作日(0/1表示)、天气状况(1-4表示)、温度、体感温度、湿度、风速,以及非注册用户、注册用户和总租赁数量。

这些详细记录为分析共享单车使用模式、环境因素影响和需求预测提供了丰富信息,有助于深入理解城市交通模式,为城市规划和政策制定提供科学依据。

数据预处理

在这里插入图片描述
本研究对共享单车租赁数据集进行了精细的预处理。主要工作包括将季节(season)和天气状况(weather)字段从数值转换为文本描述,提高了数据的可读性。

具体而言,季节字段的1、2、3、4分别映射为"春季"、“夏季”、“秋季"和"冬季”;天气状况字段的1、2、3、4则转换为"良好"、“一般”、“较差"和"非常差”。

这种转换不仅使数据更直观易懂,也便于非专业人士理解,为后续的深入分析奠定了基础。通过这些预处理步骤,研究提高了数据质量,增强了分析结果的可解释性。

在这里插入图片描述

数据可视化

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

聚类

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

模型建立及预测

本研究构建了一个深度学习模型来预测共享单车骑行人数,展现了对复杂数据特征的深入理解和高效处理能力。数据预处理包括对分类变量进行独热编码和对连续变量进行标准化,为模型训练奠定基础。

模型采用长短期记忆网络(LSTM),这种循环神经网络特别适合处理时间序列数据。LSTM通过门控机制解决了传统循环神经网络的梯度消失问题,能够捕捉数据中的长期依赖关系。网络结构包含多个LSTM层和Dropout层,增强了学习能力和泛化能力。

训练过程中,数据被分为训练集、验证集和测试集,以监控模型性能并防止过拟合。使用均方误差(MSE)作为损失函数指导优化。通过观察损失曲线,我们能够调整模型参数和结构,提高预测效果。

在这里插入图片描述

在这里插入图片描述

每文一语

每天完成一件自己需要坚持的小事情

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小王-123

您觉得舒心就点一点吧~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值