Deepseek+RAGFLOW部署教程

本篇教程为Deepseek+RAGFLOW详细部署

本篇主要基于linux服务器部署ragflow+deepseek,其他操作系统稍有差异但是大体一样。
——————————————————————————————————

前言说明:

Ubantu22系统部署RAGFLOW,在之前的博文中记录过,有需要的可以点击查看linux服务器部署ragflow+ollama

Ubantu系统离线部署ollama可参考博文基于linux服务器Ubantu20.04的离线Ollama安装(手动安装成功)

请注意区分ollama版本,最新的最好,至少要满足拉取需要模型的要求
————————————————————————————————

一、先决条件

CPU ≥ 4核;
RAM ≥ 16 GB;
磁盘 ≥ 50 GB;
Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1。
如果尚未在本地计算机(Windows、Mac或Linux)上安装Docker,请参阅安装Docker引擎
——————————————————————
我的服务器系统 Ubuntu 22.04.5 LTS,16核CPU,32G内存,200G硬盘。
——————————————————————

二、启动RAGFLOW服务器

1、确保 vm.max_map_count ≥ 262144:

vm.max_map_count.此值设置进程可能拥有的内存映射区域的最大数量。它的默认值是65530。虽然大多数应用程序需要少于一千个映射,但减少此值可能会导致异常行为,当进程达到限制时,系统会抛出内存不足错误。

RAGFlow v0.10.0使用Elasticsearch进行多次调用。正确设置vm.max_map_count的值对于Elasticsearch组件的正常运行至关重要。
具体操作

检查vm.max_map_count的值

sysctl vm.max_map_count

重置vm.max_map_count>=262144

sudo sysctl -w vm.max_map_count=262144

永久设置,写入/etc/sysctl.conf 配置文件中
利用winSCP打开/etc/sysctl.conf配置文件,将下面这句脚本写入配置文件最下端

vm.max_map_count=262144
写入效果图

注意:道理明白,不管用什么方式打开sysctl.conf配置文件,写入即可。

2、克隆RAGFLOW存储库

git clone https://github.com/infiniflow/ragflow.git

——————————————————
访问不了github.com,参考另篇博文解决
——————————————————

3、构建预构建的Docker映像并启动服务器

运行以下命令会自动下载开发版本RAGFlow Docker映像。

cd ragflow/docker
chmod +x ./entrypoint.sh
docker compose -f docker-compose.yml up -d

注意:镜像文件大约9GB,下载过程可能需要一些时间,请耐心等待。
————————————————
注意:这里拉取时间大概2个半小时(基于我的服务器性能,大家可参考)
如果拉取完成,部分容器启动错误,查看日志进行求助gpt,实在解决不了的话,可以选择所有东西(从docker部署开始)推倒重来一次,有了前面的操作经验,重新部署速度还行,问题也可得到解决,亲测有效。

2025-2-26 晚上 国内可用镜像源:
https://docker.1ms.run

————————————————

4、确认服务器状态

服务器启动成功后,通过以下命令查看服务器日志,确认服务器是否正常运行:

docker logs -f ragflow-server

部署成功截图
到此,基于 Ubuntu 22.04.5 LTS 、docker启动的ragflow部署完成。

三、Ollama上面拉取deepseek r1大模型

(1)打开ollama官网,点击models
引导图

(2)选择deepseek-r1,根据需要选择参数级别,复制对应的命令
引导图
—————————————————————
此处我选择的是deepseek-r1 7b的大模型
—————————————————————

(3)验证ollama是否正常运行,然后粘贴命令拉取大模型
正常运行
web浏览器输入【服务器IP+ollama端口11434】回车出现:Ollama is running则说明正常运行。
粘贴以下命令拉取deepseek-r1大模型

ollama run deepseek-r1:7b

拉取成功如下图所示:
拉取成功

四、在RAGFLOW中利用ollama添加deepseek-r1大模型

1.打开浏览器输入

http://localhost:80

注册登录账号
登录注册界面
登录后出现以下界面
登录后界面
配置ollama大模型,点击右上角头像,再点击模型提供商
配置
添加模型引导

如何选择url?
——————————————————————————
规则如下:
(1)Ollama和RAGFlow在同一台机器上运行,基本URL:

http://localhost:11434

(2)Ollama和RAGFlow在同一台机器上运行,并且Ollama或者RAGFLOW在Docker中,基本URL:

http://host.docker.internal:11434

(3)Ollama在与RAGFlow不同的机器上运行,基本URL:

http://<IP_OF_OLLAMA_MACHINE>:11434

注意大家根据自己实际情况填写!

———————————————————————————

添加成功如下如所示
添加成功

聊天中正常使用如下所示
聊天

五、RAGFLOW建立知识库,创建聊天(可更新)

到此,Deepseek+RAGFLOW部署教程结束!

<think>好的,我现在需要帮助用户解决RAGFlow部署DS对话时出现的错误问题。首先,用户提到了遇到错误,但没有具体说明错误信息,所以可能需要先引导用户确认具体的错误信息。不过根据用户提供的参考链接,他们可能遇到了“Internal Server Error”这类问题。 根据引用[^1]的内容,解决Internal Server Error需要检查API路由和版本配置是否正确。这可能涉及到RAGFlow的配置文件,比如检查config.yml中的API设置是否正确,特别是端口和路径是否与客户端请求匹配。另外,用户提到的DS对话可能是指对话系统的配置,需要确保AI语言模型的配置正确,比如API密钥、模型名称是否填写无误。 引用[^2]提到安装RAGFlow的步骤,包括克隆仓库和启动Docker。因此,部署错误可能和Docker环境有关。比如Docker容器是否成功启动,端口是否被占用,或者依赖服务(如数据库)是否正常运行。用户需要检查Docker日志,查看是否有启动错误或服务连接失败的情况。 接下来,我需要考虑用户可能的操作步骤,逐步排查问题。首先检查Docker容器状态,确认所有服务正常启动。然后检查配置文件,特别是API和模型配置部分。接着,查看日志文件,定位错误发生的具体位置,比如是启动时错误还是请求处理时的错误。如果是网络问题,可能需要检查防火墙或代理设置。 另外,用户可能在配置个人知识库时出现问题,比如知识库路径不正确或文件格式不支持,这也可能导致对话服务出错。需要确保知识库文件正确导入,并且在RAGFlow中正确关联到对话系统。 最后,如果以上步骤都无法解决,可能需要升级RAGFlow到最新版本,或者联系社区支持寻求帮助。同时,提供相关的日志和配置信息将有助于更快定位问题。</think>### RAGFlow部署DS对话错误解决方案 #### 1. 检查Docker容器状态 首先确认Docker容器是否正常启动: ```bash docker ps -a | grep ragflow ``` 若容器状态显示`Exited`,查看详细日志: ```bash docker logs <容器ID> ``` 常见问题可能包括端口冲突(默认端口8080)或依赖服务未启动。 #### 2. 验证配置文件 检查`config.yml`中的关键配置项: ```yaml api_server: host: 0.0.0.0 port: 8080 # 确认端口未被占用 ai_model: openai_api_key: "sk-xxx" # 检查密钥有效性 model_name: "gpt-3.5-turbo" # 确认模型名称正确 ``` 特别需注意API路由配置是否与请求路径匹配。 #### 3. 检查知识库配置 在RAGFlow控制台依次确认: ``` 知识库管理 > 文件上传 > 向量化状态 ``` 若出现红色警告标识,可能是文件解析失败导致对话服务异常。 #### 4. 查看实时日志 通过以下命令监控实时错误: ```bash tail -f /var/log/ragflow/application.log # 日志路径根据实际安装位置调整 ``` 重点关注包含`ERROR`或`WARN`的关键字日志。 #### 5. 网络连通性测试 在宿主机执行接口连通性验证: ```bash curl -X POST http://localhost:8080/api/v1/ds/conversation \ -H "Content-Type: application/json" \ -d '{"query":"测试"}' ``` 若返回`502 Bad Gateway`,需检查反向代理配置。 #### 常见错误对照表 | 错误现象 | 解决方案 | |---------|---------| | `500 Internal Server Error` | 检查模型API密钥有效性 | | `404 Not Found` | 验证API路由版本是否匹配 | | `403 Forbidden` | 检查跨域配置(CORS) | | 长时间无响应 | 确认GPU驱动已正确安装(若使用GPU加速) |
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值