以下是针对不同场景的 Prompt Engineering 模板及其应用示例,涵盖信息提取、创意生成、逻辑推理等高频需求,结合最佳实践和优化策略:
一、基础模板框架
1. 角色定义 + 任务描述 + 输出格式
你是一名[角色],请根据以下要求完成任务:
- 任务目标:[具体目标]
- 输入内容:[输入数据/背景]
- 输出格式:[JSON/列表/步骤等]
- 约束条件:[字数/风格/排除内容]
示例:
你是一名营养师,请为糖尿病患者设计一份早餐食谱:
- 任务目标:控制升糖指数,保证蛋白质摄入
- 输入内容:患者年龄60岁,偏好中式餐饮
- 输出格式:{ "食谱名称": "", "食材": [], "烹饪步骤": [] }
- 约束条件:避免使用精制糖,步骤不超过5步
2. 链式思考(Chain-of-Thought)
请分步骤解决以下问题,并解释每一步的逻辑:
问题:[具体问题]
步骤1:[第一步分析]
步骤2:[第二步推导]
...
最终结论:[明确答案]
示例:
如何判断一篇论文是否适合投稿到CVPR?
步骤1:分析论文主题与CVPR近年收录范围的匹配度
步骤2:评估实验方法是否包含创新性视觉模型
步骤3:对比实验结果与SOTA指标的差距
最终结论:给出投稿建议(适合/不适合)及理由
二、高频场景模板
1. 信息提取与结构化
从以下文本中提取结构化信息:
- 文本内容:[粘贴文本]
- 提取字段:[实体1]、[实体2]、[关系]
- 输出格式:Markdown表格,包含"类别"、"详细信息"两列
- 异常处理:如信息缺失则标记为"未知"
优化技巧:
- 添加示例减少歧义(如
类似:| 人物 | 张三 | 职位 | CEO |
) - 使用
必须严格基于文本,禁止推测
约束幻觉
2. 创意生成
你是一个[角色],请生成[数量]个[创意类型],要求:
- 核心主题:[主题关键词]
- 风格参考:[如科幻赛博朋克/古典诗词]
- 避免元素:[过度使用的套路]
- 输出格式:编号列表,每个创意包含标题和50字概述
示例:
作为科幻作家,生成3个短篇故事创意:
- 核心主题:时间循环悖论
- 风格参考:《黑镜》式科技反思
- 避免元素:外星人、超能力
3. 逻辑推理与验证
请验证以下结论是否成立,并按顺序:
1. 复述结论:[原文结论]
2. 列出支持/反对证据(引用公开数据)
3. 逻辑漏洞分析
4. 最终判断:成立/不成立/部分成立
示例:
验证“全球变暖主要原因是太阳活动”:
1. 复述结论:太阳辐射变化是气温上升主因
2. 支持证据:引用IPCC报告中太阳辐射贡献率<10%的数据
3. 漏洞分析:混淆相关性(近年太阳活动平稳但气温持续升高)
4. 结论:不成立
三、高级优化策略
1. 动态少样本学习
参考以下示例的输入输出格式,完成新任务:
示例1:
输入:[问题1]
输出:[答案1]
示例2:
输入:[问题2]
输出:[答案2]
新任务:
输入:[你的问题]
输出:
适用场景:
- 模型对任务格式不熟悉时
- 需定制化响应风格(如法律文书/医疗报告)
2. 对抗性提示
请以批判性思维分析以下观点,需指出:
- 至少2个逻辑谬误
- 1个数据来源可靠性问题
- 提出反例或替代解释
观点:[原文内容]
作用:
- 减少模型对错误前提的顺从
- 增强事实核查能力
3. 元提示(Meta-Prompting)
你是一个Prompt优化助手,请:
1. 分析我提供的初始Prompt存在的问题
2. 提出3个改进版本并解释优化点
3. 推荐最适合的版本及使用场景
我的初始Prompt:[你的原始指令]
四、效果评估与迭代
1. 评估维度
指标 | 检查方法 | 优化手段 |
---|---|---|
相关性 | 结果是否严格围绕任务目标? | 添加必须聚焦于[关键词] |
完整性 | 是否遗漏关键要素? | 明确必须包含[要素列表] |
可执行性 | 输出是否可直接应用? | 要求以代码/API格式输出 |
2. A/B测试框架
请对以下两个Prompt版本生成结果,对比:
- Version A:[Prompt A]
- Version B:[Prompt B]
对比维度:准确性、创造性、符合格式要求程度
五、学习资源推荐
- 官方指南
- 社区案例库
- PromptBase:付费Prompt交易市场
- Awesome ChatGPT Prompts:开源模板库
- 学术论文
- 《Prompt Programming for Large Language Models》(arXiv:2102.07350)
- 《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》(NeurIPS 2022)
通过灵活组合这些模板,并持续通过分析-生成-评估
循环迭代,可显著提升与大模型的协作效率。建议从简单任务开始实践,逐步增加复杂度。