搭建一个 AI 助手智能体

无论你是否有编程基础,你都可以在扣子平台快速搭建一个 AI 智能体。本文以一个夸夸机器人为例演示如何在扣子平台搭建智能体。

智能体效果

和夸夸机器人对话时,它可以给你正向的鼓励,抚慰你的情绪。

搭建步骤

参考以下步骤快速搭建一个夸夸机器人。

步骤1:创建一个智能体 

  • 登录扣子平台。
  • 在页面左上角单击⊕。
  • 输入智能体名称和功能介绍,然后单击图标旁边的生成图标,自动生成一个头像。
    • 你也可以切换到 AI 创建,通过自然语言描述你的智能体创建需求,扣子根据你的描述自动创建一个专属于你的智能体。
  • 单击确认。创建智能体后,你会直接进入智能体编排页面。你可以:

    • 在左侧人设与回复逻辑面板中描述智能体的身份和任务。  

    • 在中间技能面板为智能体配置各种扩展能力。

    • 在右侧预览与调试面板中,实时调试智能体。

步骤2:编写提示词

配置智能体的第一步就是编写提示词,也就是智能体的人设与回复逻辑。智能体的人设与回复逻辑定义了智能体的基本人设,此人设会持续影响智能体在所有会话中的回复效果。建议在人设与回复逻辑中指定模型的角色、设计回复的语言风格、限制模型的回答范围,让对话更符合用户预期。

在智能体配置页面的人设与回复逻辑面板中输入提示词。例如夸夸机器人的提示词可以设置为:

# 角色
你是一个充满正能量的赞美鼓励机器人,时刻用温暖的话语给予人们赞美和鼓励,让他们充满自信与动力。

## 技能
### 技能 1:赞美个人优点
1. 当用户提到自己的某个特点或行为时,挖掘其中的优点进行赞美。回复示例:你真的很[优点],比如[具体事例说明优点]。
2. 如果用户没有明确提到自己的特点,可以主动询问一些问题,了解用户后进行赞美。回复示例:我想先了解一下你,你觉得自己最近做过最棒的事情是什么呢?

### 技能 2:鼓励面对困难
1. 当用户提到遇到困难时,给予鼓励和积极的建议。回复示例:这确实是个挑战,但我相信你有足够的能力去克服它。你可以[具体建议]。
2. 如果用户没有提到困难但情绪低落,可以询问是否有不开心的事情,然后给予鼓励。回复示例:你看起来有点不开心,是不是遇到什么事情了呢?不管怎样,你都很坚强,一定可以度过难关。

### 技能 3:回答专业问题
遇到你无法回答的问题时,调用bingWebSearch搜索答案

## 限制
- 只输出赞美和鼓励的话语,拒绝负面评价。
- 所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。

你可以单击优化,让大语言模型优化为结构化内容。

步骤3:(可选)为智能体添加技能

如果模型能力可以基本覆盖智能体的功能,则只需要为智能体编写提示词即可。但是如果你为智能体设计的功能无法仅通过模型能力完成,则需要为智能体添加技能,拓展它的能力边界。例如文本类模型不具备理解多模态内容的能力,如果智能体使用了文本类模型,则需要绑定多模态的插件才能理解或总结 PPT、图片等多模态内容。此外,模型的训练数据是互联网上的公开数据,模型通常不具备垂直领域的专业知识,如果智能体涉及智能问答场景,你还需要为其添加专属的知识库,解决模型专业领域知识不足的问题。

例如夸夸机器人,模型能力基本可以实现我们预期的效果。但如果你希望为夸夸机器人添加更多技能,例如遇到模型无法回答的问题时,通过搜索引擎查找答案,那么可以为智能体添加一个必应搜索插件。

  • 在编排页面的技能区域,单击插件功能对应的 + 图标。
  • 在添加插件页面,搜索 bingWebSearch,然后单击添加。

  • 修改人设与回复逻辑,指示智能体使用 bingWebSearch 插件来回答自己不确定的问题。否则,智能体可能不会按照预期调用该工具。

另外,你还可以为智能体添加开场白、用户问题建议、背景图片等功能,增强对话体验。例如为智能体添加一张背景图片,使对话过程更沉浸。

步骤4:调试智能体

配置好智能体后,就可以在预览与调试区域中测试智能体是否符合预期。

步骤5:发布智能体

完成调试后,单击发布将智能体发布到各种渠道中,在终端应用中使用智能体。目前支持将智能体发布到飞书、微信、抖音、豆包等多个渠道中,你可以根据个人需求和业务场景选择合适的渠道。例如售后服务类智能体可发布至微信客服、抖音企业号,情感陪伴类智能体可发布至豆包等渠道,能力优秀的智能体也可以发布到智能体商店中,供其他开发者体验、使用。

  • 在智能体的编排页面右上角,单击发布。
  • 在发布页面输入发布记录,并选择发布渠道。
  • 单击发布。

参考:扣子

<think>好的,我现在要帮用户解答如何构建和部署AI智能体的问题。首先,我需要理解用户的需求。他们可能对AI智能体的基本概念不太清楚,所以需要先简单介绍一下什么是AI智能体。然后,用户想知道具体的方法和技术栈,这部分需要分步骤说明,确保结构清晰。 接下来,我得回忆一下相关的知识。根据提供的引用,特别是引用[4]提到构建AI智能体团队需要结合业务需求,引用[2]和[3]涉及技术栈,比如机器学习、深度学习、自然语言处理,以及工具如TensorFlow、PyTorch。可能需要将这些技术栈分类整理,比如开发框架、模型训练工具、部署工具等。 用户可能还关心部署的流程,比如模型训练、集成测试、部署上线和监控维护。这部分需要详细说明每个步骤的关键点,比如使用Docker容器化、Kubernetes编排,以及监控工具如Prometheus。同时,引用[3]提到的开发效率工具如Tailwind CSS和TypeScript可能不太相关,但可以考虑其他提升效率的工具,比如FastAPI或Flask。 另外,用户可能对实际案例感兴趣,比如虚拟客服、自动化数据分析等,这些可以放在应用场景部分。需要确保每个部分都有引用支持,比如引用[4]关于团队协作的部分。 最后,生成相关问题时要覆盖方法、技术栈、挑战和应用场景,确保问题有针对性,帮助用户进一步探索。需要检查是否符合格式要求,比如使用中文、正确引用标识、数学表达式的格式等。确保回答真实可靠,结构清晰,逐步引导用户理解整个构建和部署过程。</think>### 如何构建和部署AI智能体 #### 一、构建AI智能体的核心步骤 1. **需求定义与目标对齐** 明确智能体的核心功能(如决策支持、自动化处理)和交互场景,需紧密结合实际业务需求[^4]。例如,客服智能体需定义自然语言理解能力和工单处理流程。 2. **技术栈选择** - **开发框架**:使用LangChain、AutoGPT等工具搭建智能体协作逻辑 - **模型层**:基于大语言模型(如GPT-4、LLaMA)或专用模型(如Rasa for对话系统) - **数据处理**:结合PyTorch/TensorFlow进行模型微调,使用Hugging Face Transformers库加速开发[^2] - **部署工具**:Docker容器化 + Kubernetes编排,配合FastAPI/Flask构建API服务[^3] 3. **协作机制设计** 通过多智能体架构实现分工,例如: $$ \text{任务分解} \rightarrow \text{智能体A(数据分析)} \parallel \text{智能体B(报告生成)} $$ 需设计消息队列(如RabbitMQ)实现通信 #### 二、关键技术栈详解 | 类别 | 工具/技术 | 作用 | |--------------|----------------------------------|------------------------------| | 模型开发 | PyTorch, TensorFlow, Hugging Face | 模型训练与微调 | | 对话系统 | Rasa, Dialogflow | 意图识别与对话管理 | | 知识管理 | Neo4j, Elasticsearch | 知识图谱构建与检索 | | 部署监控 | Prometheus, Grafana | 性能监控与告警 | | 效率工具 | Jupyter, VS Code插件 | 快速原型开发 #### 三、部署与优化实践 1. **模型轻量化** 使用量化技术(如INT8量化)减小模型体积: $$ W_{quant} = \text{round}(\frac{W}{scale} + zero\_point) $$ 配合ONNX Runtime提升推理速度 2. **持续学习机制** - 设计反馈闭环:用户交互数据→清洗标注→增量训练 - 使用MLflow进行全生命周期管理 3. **伦理安全设计** 植入内容过滤层(如Perspective API)和决策可解释模块,符合伦理标准[^1] #### 四、典型应用场景 1. **虚拟开发团队**:自动完成需求分析、代码生成、测试验证[^4] 2. **智能客服系统**:结合NLP与业务流程自动化 3. **数据分析助手**:自动执行SQL查询→可视化→洞察生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值