睡多久才最长寿?清华大学发文:七小时最佳!睡多睡少都会加速衰老

欢迎报名2024年郑老师团队课程课程!

郑老师科研统计培训,包括临床数据、公共数据分析课程,欢迎报名

编者

一直以来,大部分人对“好睡眠”的评判标准是满足“八小时睡眠”。事实真的如此吗?

2024年3月,中国学者发表最新研究,探究睡眠持续时长与衰老的关系,以及不同生活方式是否会在睡眠和衰老中发挥作用,现与各位做个分享!

人的一生约有三分之一的时间在睡眠中度过,良好的睡眠对于我们的健康至关重要。但,睡多久才是“最佳睡眠时间”?睡多睡少对我们的身体到底会造成什么影响?有什么办法可以在睡眠和衰老之间发挥作用?

有研究表明,与睡眠习惯稳定的人相比,不规律的睡眠或可使生物年龄衰老9个月。这是真的吗?表型年龄作为各种疾病的预测因子和评估衰老的生物标志物,反应的是一个人的生理年龄,是由身体特征和功能而非其实际年龄决定的。但,睡眠持续时间与衰老之间是否具有直接联系,以及其他生活方式的改善是否能在睡眠与衰老中发挥作用?

2024年3月15日,清华大学学者在期刊Scientific Reports(二区,IF=4.6)发表了一篇题为:“Inverted U-shaped relationship between sleep duration and phenotypic age in US adults:a population-based study ”的前瞻性队列研究,探究睡眠持续时间与衰老之间的关系,以及其他生活方式是否在睡眠和衰老中发挥作用。

研究结果表明,7小时睡眠最佳,过长过短的睡眠时间都增加表型年龄,促进生物学衰老。此外,运动水平显著调节睡眠和衰老之间的关系。

d1924e4cc512e9f65e0b69fc90c5cd09.png

该研究共纳入美国国家健康和营养调查(NHANES)数据库中具有可用的睡眠持续时间和表型年龄数据的13569名参与者,平均表型年龄43岁。 

根据睡眠持续时间,将参与者分为四组:

  • 长睡眠(≥8小时),

  • 正常睡眠(7-8小时),

  • 短睡眠(6-7小时),

  • 极短睡眠(<6小时)。

在所有参与者中,大多数人的睡眠时间为6-9小时。

主要研究结果

1.过长或过短的睡眠时间都会造成生物衰老

研究发现,在完全调整的模型中,与正常睡眠组相比,短睡眠、极短睡眠、长睡眠均与表型年龄之间呈正相关[粗模型,β=0.329,95%CI(−0.012,0.669),p=0.058;模型1,β=−0.155,95% CI(−0.317,0.006),p=0.059]

  • 正常睡眠组相比,在粗模型和模型1中发现短睡眠与表型年龄呈正相关。

  • 以正常睡眠组为参考,极短睡眠与表型年龄呈正相关

  • 与正常睡眠组相比,长睡眠组的表型年龄也显著升高。

这意味着,过长过短的睡眠时间都促进生物学衰老。

bd923fafc90764d63544de2cd283ad48.png

粗模型:未调整协变量。

模型1:对年龄、性别和种族进行了调整。

模型2:对年龄、性别、种族、婚姻状况、受教育程度、贫困状况、体重指数、吸烟者、饮酒者、运动活动、高血压、糖尿病和心血管疾病进行了调整

2.最佳睡眠时间为7小时,衰老速度最慢

研究结果表明,睡眠持续时间和表型年龄之间关系的拐点为7小时,呈倒U联系。说明当睡眠持续时间为7小时时,衰老速度最慢,表型年龄最小。

d29ed6eefe00af6fd5316b4f66be688e.png

3.运动可以显著调节睡眠和衰老之间的关系

该研究团队分析了生活方式等因素对睡眠和衰老关系的影响,结果表明运动水平可显著调节睡眠和衰老之间的关系。

  • 在没有运动习惯的参与者中,极短睡眠和极长睡眠与表型年龄呈正相关。

  • 然而,在每周运动150分钟以上的人参与者中,睡眠持续时间与表型年龄负相关,即较长的睡眠时间与表型年龄降低有关,而较短的睡眠时间具有较高的表型年龄。

2d2db062391303b213fa16439d26b769.png

设计与统计学方法

一、研究设计

P(Population)参与者:美国国家健康和营养调查(NHANES)数据库中具有可用的睡眠持续时间和表型年龄数据的13569名参与者

E(exposure)暴露:睡眠持续时间

O(outcome)结局:表型年龄

S(Study design)研究类型前瞻性队列研究

二、统计方法

1.统计描述方法:对于参与者的基线特征,为了解释概念,连续变量以均值和标准误差(SE)表示,而分类变量以百分比(%)表示。

24de05651d3956f97691eb995574de6e.png

2.采用加权线性回归模型,探讨睡眠时间和表型年龄之间的关系,解释了三个不同模型中的几个混杂变量。

a4dc937f63a0a27c630f44ab3b224b20.png

3.使用值效应分析来检验剂量-反应关系。

  • 最初,采用平滑曲线变换技术作为初步分析,以辨别自变量是否已被划分为离散区间。

  • 然后,使用分段回归,即利用单独的线段来计算每个区间。采用对数似然比检验,将单行(非分段)模型与分段回归模型进行比较,以确定是否存在一个阈值。

  • 最后,利用两步递归方法确定了连接基于该模型的可能性最大化的片段的感染点。

9da3bf2f3e560c04693c2644f3e773fe.png

4.在确定了感染点后,使用最优结设置为3的限制性立方样条(RCS)回归模型来评估非线性关联。采用自然对数对数变换分析表型年龄,更好地反映RCS分析的变化趋势。

8a60f2df402468beea6c45977405b625.png

5.采用了亚组分析来调查生活方式因素对睡眠时间和表型年龄之间的相关性的影响。

1e725eba1f51874d98b5c630fb4215cd.png

后记

综上所述,本文揭示抗衰老的最佳睡眠时长为7小时,过长或过短都会加速表型年龄衰老。但对于睡眠时间长且有运动习惯的人来说,可以抵消由于睡眠时间过长造成的不良影响。而对于睡眠时间短的人,过量的运动范围会增加炎症反应。

老话常说“过犹不及”,规律的睡眠加上定期的运动,我们的身体自然而然会调整到最佳状态。从今夜开始,尽可能早睡吧!

一个专门做公共数据库的公众号,关注我们

本公众提供各种科研服务了

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看:

发文后退款:2024-2025年科研统计课程介绍

二、数据分析服务

浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情:

课题、论文、毕业数据分析 

临床试验设计与分析 公共数据库挖掘与统计

内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值