NHANES仅2篇的新膳食指标DI-GM,中国学者探究其与抑郁的关联发文SCI

22e8c78af245c24d94d54f416a58d7c8.png

 引言

想发高分文章,用NHANES新指标简直是如虎添翼!

今天分享的这篇文章,中国学者挖掘NHANES数据库的数据,探讨最新开发的肠道微生物群膳食指数(DI-GM)与抑郁症之间的关联。重要的是,这个NHANES新指标仅搜索到2篇相关文章,搁谁谁不心动!

接下来,快让我们一起来看看今天这篇文章!

抑郁症是一种广泛存在的心理疾病,严重损害了患者生活质量的同时,甚至还会导致死亡。然而,目前人们对抑郁症的发病机理尚未完全了解。

最近,有学者新开发了一种肠道微生物群膳食指数(DI-GM),该指数旨在评估与维持健康肠道微生物群相关的饮食质量。鉴于先前的众多研究已经强调了肠道菌群与抑郁症之间的密切关系,因此,深入分析DI-GM与抑郁症之间的关联是一项很有意义的研究。

2024年10月8日,中国学者用NHANES数据库,在期刊European Archives of Psychiatry And Clinical Neuroscience(医学三区,IF=3.5)发表题为:“Association of the newly proposed dietary index forgut microbiota and depression: the mediation effectof phenotypic age and body mass index”的研究论文,旨在研究DI-GM与抑郁症之间的关联,同时进一步探讨表型年龄和体重指数(BMI)是否该关联中起到了中介作用。

研究结果表明,新提出的肠道微生物群膳食指数(DI-GM)与抑郁症患病率、PHQ-9总分以及特定的抑郁症症(如睡眠困难、疲倦感和食欲变化)之间均呈负相关。此外,表型年龄和BMI在DI-GM与抑郁症的关联中起到显著的中介作用。

67b434e15a822005bd96cbd38a5ae608.png

本公号回复“ 原文”即可获得文献PDF等资料。发文难?我们的NHANES平台半天就能搞定一篇NHANES文章!如感兴趣请联系郑老师团队,微信号:aq566665

研究团队基于美国国家健康与营养调查(NHANES)数据库2005~2018年的数据,最终纳入了20,005名年龄≥20岁的符合要求的参与者,用该样本代表1.2346亿美国成年人的特征。在这1.2346亿人群平均年龄为47.30岁,其中898万人被确诊为抑郁症。

研究团队运用患者健康问卷-9(PHQ-9)来评估参与者的抑郁状况,并基于饮食回忆数据计算出DI-GM。随后,团队采用了加权多变量logistic回归和线性回归方法,研究DI-GM与抑郁症以及PHQ-9总分之间的关联性。此外,研究团队进一步用中介效应分析探讨了表型年龄与BMI是否在DI-GM与抑郁症的关联中起到了中介作用。

9c4fcde2cd54bd1b1fe07910d8801de5.png

图1 参与者筛选流程图

NHANES新标DI-GM与抑郁症显著关联

研究结果表明,DI-GM评分越高,抑郁症患病率和PHQ-9总评分就越低

  • 具体而言,DI-GM评分每增加一分,抑郁症患病率就会下降11%,同时PHQ-9总分会下降0.17。

  • 此外,在完全调整的模型中,DI-GM评分≥6的参与者与抑郁症患病率和总PHQ-9得分均呈显著负相关。

278ff18833c0df06d020450673c70441.png

表1 DI-GM与抑郁症之间的关系

RCS结果表明,DI-GM和抑郁症之间呈非线性相关,而对机体有利和不利的肠道微生物群与抑郁症之间均呈线性相关。

00e598fc60c0e8bb5e8e57386b066f75.png

图2 DI-GM与抑郁症的关系的RCS曲线

同时,研究团队还探讨了DI-GM与抑郁症症状的关联。结果显示,在对所有混杂因素进行调整后,DI-GM与特定抑郁症症状(重复睡眠或睡眠过多、感觉疲倦或精力不足、食欲不振或暴饮暴食)呈负相关。

这意味着,DI-GM评分越高,这些特定抑郁症症状的发生率越低

03c674bb1253548d056afc4b419a6371.png

图3 DI-GM与抑郁症症状的关系

此外,中介效应分析的结果显示,表型年龄和BMI均在DI-GM与抑郁症的关联中起到了中介作用,中介比例分别为19.81%和16.49%。

fc1d651a0010dca78929d33fc1ac8db2.png

图4 中介分析图

综上所述,研究团队认为,通过改善饮食质量,特别是增加有益肠道微生物群的食物摄入,有助于降低患抑郁症的风险。此外,表型年龄和BMI在DI-GM与抑郁症的关联中具有显著的中介作用。

全新指标,可遇不可求!对NHANES数据库感兴趣的朋友,欢迎关注“公共数据库与孟德尔随机化”公众号,我们将持续分享NHANES数据库的发文思路和指标的最新动态!果你也想用NHANES新指标发高分SCI,那就快快加入郑老师的NHANES一对一指导课程,买课立赠一站式NHANES平台,让你紧跟潮流,发文从不落后!

关于郑老师统计团队及公众号

大型医学统计公众号平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理

我们提供以下科研与统计服务:

研究者发起的临床试验项目

医院回顾性数据分析与预测模型

医学数据库SEER、NHANES、GBD、孟德尔随机化等挖掘发表级数据

预测模型、GBD、NHANES医学数据库挖掘1对1R语言指导

联系助教小董咨询(微信号aq566665

b9b0956e440cae7da1635db582b9a7f3.jpeg

参考资源链接:[美国饮食中的水果和蔬菜数据来自NHANES 11调查-外文文献翻译.pdf](https://wenku.csdn.net/doc/6c5h6ubem8?utm_source=wenku_answer2doc_content) 探究居民饮食习惯健康之间的关系是一项复杂且重要的研究工作。为了帮助你深入理解如何使用Python分析NHANES数据集,建议参考《美国饮食中的水果和蔬菜数据来自NHANES 11调查-外文文献翻译.pdf》这份资料,它能为你提供翻译后的详细数据和研究背景。 首先,你需要熟悉NHANES数据集的结构和内容,这份数据集包含了详细的个人健康和营养信息。使用Python进行数据分析,通常会用到pandas库来加载和清洗数据,matplotlib和seaborn库来绘制图表进行可视化分析。 具体步骤包括: 1. 导入数据集,并使用pandas进行数据清洗,比如处理缺失值、异常值以及数据类型转换。 2. 利用描述性统计分析,了解水果和蔬菜摄入量的分布情况,以及各种健康指标的基本特征。 3. 进行探索性数据分析,比如绘制摄入量健康指标之间的散点图、相关系数分析等,来初步探索变量间的关系。 4. 构建统计模型,例如线性回归模型或逻辑回归模型,来分析水果和蔬菜摄入量对健康指标的影响,并验证模型的拟合度和统计显著性。 5. 应用模型结果,进行预测或得出结论。 在分析过程中,可能需要考虑多种协变量的影响,如年龄、性别、体重指数(BMI)、遗传因素等,这些都可能饮食和健康状况有关。 完成以上分析后,你将能够得到关于饮食习惯对健康影响的深入见解。为了进一步深化你的分析技能和理解,建议继续阅读《美国饮食中的水果和蔬菜数据来自NHANES 11调查-外文文献翻译.pdf》中的具体案例和方法,这些内容将为你的研究工作提供更全面的理论支持和实践指导。 参考资源链接:[美国饮食中的水果和蔬菜数据来自NHANES 11调查-外文文献翻译.pdf](https://wenku.csdn.net/doc/6c5h6ubem8?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值