反常积分(如何解题)

21.反常积分(如何解题)

21.1 如何开始

反常积分的瑕点经常出现在

  1. 垂直渐近线的点附近(也就是分母为0时的情况)
  2. 正无穷处( ∞ \infty
  3. 负无穷处( − ∞ -\infty

我们每次只关注一个瑕点、倾向于被积函数恒正
第一个任务:适当拆分积分(使得每次只关注一个瑕点)
第二个任务:处理被积函数存在负值的情况

21.1.1 拆分积分


21.1.2 如何处理负值

处理负函数值的三种方法

例1:

例2:

21.2 积分判别法总结

21.3 常见函数在 ∞ \infty − ∞ -\infty 附近的表现

21.3.1 多项式和多项式型函数在 ∞ \infty − ∞ -\infty 附近的表现




例1:

例2:

例3:

例4:

例5:
:

21.3.2 三角函数在 ∞ \infty − ∞ -\infty 附近的表现


例1:

21.3.3 指数在 ∞ \infty − ∞ -\infty 附近的表现


例1:

例2:

例3:

例4:

例5:

例6:

21.3.4 对数在 ∞ \infty 附近的表现




例1:

例2:

例3:

例4:

例5:

例6:

21.4 常见函数在 0 附近的表现

21.4.1 多项式和多项式型函数在 0 附近的表现



例1:

例2:

例3:

例4:

21.4.2 三角函数在 0 附近的表现




例1:

例2:

例3:

例4:

例5:

21.4.3 指数函数在 0 附近的表现




例1:

例2:

例3:

21.4.4 对数函数在 0 附近的表现


例1:

例2:

21.4.5 更一般的函数在 0 附近的表现

若一个函数有在 0 附近收敛与该函数的麦克劳林级数,则函数在 x → 0 x\rightarrow 0 x0 时渐进等价于级数的最低次项


例1:

21.5 如何应对不在 0 或 ∞ \infty 处的瑕点

积分下限为瑕点

积分上限为瑕点


例1:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值