Chapter21:反常积分(如何解题)
21.反常积分(如何解题)
21.1 如何开始
反常积分的瑕点经常出现在
- 垂直渐近线的点附近(也就是分母为0时的情况)
- 正无穷处( ∞ \infty ∞)
- 负无穷处( − ∞ -\infty −∞)
我们每次只关注一个瑕点、倾向于被积函数恒正
第一个任务:适当拆分积分(使得每次只关注一个瑕点)
第二个任务:处理被积函数存在负值的情况
21.1.1 拆分积分
21.1.2 如何处理负值
处理负函数值的三种方法
例1:
例2:
21.2 积分判别法总结
21.3 常见函数在 ∞ \infty ∞ 和 − ∞ -\infty −∞ 附近的表现
21.3.1 多项式和多项式型函数在 ∞ \infty ∞ 和 − ∞ -\infty −∞ 附近的表现
例1:
例2:
例3:
例4:
例5:
21.3.2 三角函数在 ∞ \infty ∞ 和 − ∞ -\infty −∞ 附近的表现
例1:
21.3.3 指数在 ∞ \infty ∞ 和 − ∞ -\infty −∞ 附近的表现
例1:
例2:
例3:
例4:
例5:
例6:
21.3.4 对数在 ∞ \infty ∞ 附近的表现
例1:
例2:
例3:
例4:
例5:
例6:
21.4 常见函数在 0 附近的表现
21.4.1 多项式和多项式型函数在 0 附近的表现
例1:
例2:
例3:
例4:
21.4.2 三角函数在 0 附近的表现
例1:
例2:
例3:
例4:
例5:
21.4.3 指数函数在 0 附近的表现
例1:
例2:
例3:
21.4.4 对数函数在 0 附近的表现
例1:
例2:
21.4.5 更一般的函数在 0 附近的表现
若一个函数有在 0 附近收敛与该函数的麦克劳林级数,则函数在 x → 0 x\rightarrow 0 x→0 时渐进等价于级数的最低次项
例1:
21.5 如何应对不在 0 或 ∞ \infty ∞ 处的瑕点
积分下限为瑕点
积分上限为瑕点
例1: