从线代角度图解:通解、特解、非齐次通解、非齐次特解、齐次通解、齐次特解
声明:本文为笔者读完《Introduction to Linear Algebra》后对此内容的个人理解,如有误,请各位在评论区予以纠正!
明确齐次非齐次的概念
对于齐次非齐次的理解摘抄自:什么是线性、非线性、齐次、非齐次
首先求解一个方程组
解完本例会对上图进行图解
本例方程组的增广矩阵形式
Particular Solution (
x
p
x_p
xp)
R
x
=
d
R\boldsymbol{x}=\boldsymbol{d}
Rx=d
[
1
0
3
0
1
−
2
]
[
x
1
x
2
x
3
]
=
[
2
1
]
\begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}= \begin{bmatrix} 2\\ 1 \end{bmatrix}
[10013−2]⎣
⎡x1x2x3⎦
⎤=[21]
[ 1 0 3 0 1 − 2 ] [ 2 1 0 ] = [ 2 1 ] \begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}= \begin{bmatrix} 2\\ 1 \end{bmatrix} [10013−2]⎣ ⎡210⎦ ⎤=[21]
x
p
=
[
2
1
0
]
\boldsymbol{x}_p=\begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}
xp=⎣
⎡210⎦
⎤
非齐次方程组对应两平面交线上的某个点为方程组的某个Particular Solution
Special Solution(
x
n
u
l
l
s
p
a
c
e
x_{nullspace}
xnullspace)
R
x
=
0
R\boldsymbol{x}=\boldsymbol{0}
Rx=0
[
1
0
3
0
1
−
2
]
[
x
1
x
2
x
3
]
=
[
0
0
]
\begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}= \begin{bmatrix} 0\\ 0 \end{bmatrix}
[10013−2]⎣
⎡x1x2x3⎦
⎤=[00]
{
x
1
+
3
x
3
=
0
x
2
−
2
x
3
=
0
\begin{cases} x_1+3x_3=0\\ x_2-2x_3=0 \end{cases}
{x1+3x3=0x2−2x3=0
将主元变量写到等号左侧,自由变量写到等号右侧
x
1
=
−
3
x
3
x
2
=
2
x
3
x_1=-3x_3\\ x_2=2x_3
x1=−3x3x2=2x3
[
x
1
x
2
x
3
]
=
x
3
[
−
3
2
1
]
x
n
=
x
3
[
−
3
2
1
]
\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=x_3\begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix}\\ ~\\ \boldsymbol{x}_n=x_3\begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix}
⎣
⎡x1x2x3⎦
⎤=x3⎣
⎡−321⎦
⎤ xn=x3⎣
⎡−321⎦
⎤
齐次方程组对应两平面交线上某个点为某个Special Solution
综合以上:
通过线性组合
x
p
x_{p}
xp(Particular Solution)和
x
n
x_{n}
xn(Special Solution)的线性组合得到Complete Solution(即下图黑线上的所有点)
接下来我们借由此例来图解:通解、特解、非齐次通解、非齐次特解、齐次通解、齐次特解之间的关系
为了便于读者理解,首先明确通解是方程组对应平面交线上所有点,特解是这些点中的其中一个点
线性组合时,从向量角度便于理解,以原点为向量起点,这些交线上的点为向量终点
非齐次通解 = 齐次通解 + 非齐次特解
蓝色向量与紫色向量线性组合得到终点在黑线上的所有向量,这些向量的终点为黑线上所有点即对于非齐次通解
齐次通解 = 任意常数×齐次特解
通过对蓝色向量的缩放可以得到红线上所有点
齐次特解 = 齐次特解 - 齐次特解
白色向量 = 蓝色向量 - 黑色向量
因0一定是齐次方程的解,所以当两个齐次特解之间的系数和为0时就构成了齐次方程的一个特解
若
y = a y 1 ∗ − b y 2 ∗ y=ay_1^*-by_2^* y=ay1∗−by2∗
为齐次方程的特解,则满足 a − b = 0 a-b=0 a−b=0
非齐次特解 = 非齐次特解 + 确定常数×齐次特解
橙色向量 = 紫色向量 + 对蓝色向量进行某一个固定缩放得到的向量
齐次特解 = 非齐次特解 - 非齐次特解
粉色向量 = 绿色向量 − - − 紫色向量
齐次特解(蓝色向量与粉色向量平行,模长相等)
非齐次的两个特解为黑线上两个点
为什么非齐次特解之间系数和需要为1时才能得到另一个非齐次特解?
当特解1(对应白色向量)、特解2(对应紫色向量)系数和不为1时,合成的向量(绿色向量)其终点不在非齐次解的那条直线上,也就无法构成非齐次特解
为什么非齐次特解之间系数和需要为1时才能得到另一个非齐次特解?
非奇特 = c 1 c_1 c1非奇特 + c 2 c_2 c2非奇特 (其中 c 1 + c 2 = 1 c_1+c_2=1 c1+c2=1)
当特解1(对应白色向量)、特解2(对应紫色向量)系数和为1时,合成的向量(粉色向量)其终点就在非齐次解的那条直线上,也就构成了非齐次特解
若
y = a y 1 ∗ + b y 2 ∗ y=ay_1^*+by_2^* y=ay1∗+by2∗
为非齐次方程的特解,则满足 a + b = 1 a+b=1 a+b=1
系数和为1意味着每个系数都小于1,即对两个非齐次特解对应的向量进行缩小,这样才能使合成的向量其终点最终在非齐次解的那条线上