(2019)建筑物中的占用感知:数据分析方法综述

本文回顾了建筑物占用率检测、计数和跟踪的文献,重点关注了与之相关的数学方法和工具。讨论了数据预处理、特征提取、降维、信息融合以及各种占用检测算法,如概率图形模型、高斯过程、系统识别技术和支持向量机。此外,还探讨了数据挖掘和聚类方法在无监督学习中的应用。这些算法对于智能建筑的能效管理、安全性和居住者舒适度至关重要。
摘要由CSDN通过智能技术生成

Energy & Buildings(2019)

建筑物中的占用感知:数据分析方法综述

Occupancy sensing in buildings_ A review of data analytics approaches

作者:Homagni Sahaa, Anthony R. Floritab, Gregor P. Henzec,b, Soumik Sarkara,∗

a爱荷华州立大学,艾姆斯,伊利诺伊州,美国(Iowa State University, Ames, IA, USA)
b美国科罗拉多州戈尔登国家可再生能源实验室(National Renewable Energy Laboratory, Golden, CO, USA)
c科罗拉多大学,Boulder,CO,美国(University of Colorado, Boulder, CO, USA)

摘要ABSTRACT

本文回顾了与建筑物占用率检测、计数和跟踪 building occupancy detection, counting, and tracking(建筑物占用率估计的三个领域)相关的文献,重点介绍了数学方法和相应的指标。其目的是为读者提供数据收集后用于占用率推断的硬件和技术背景,重点放在占用率估计的算法特征上。综述了研究人员解决这一问题的各种方法,包括:数据收集、清理过程、算法利用和分类,以及数据结构和组织。预测和性能指标的范围用于通过(室内)占用率估计的综合总结,建立基准系统,在所用数学工具的背景下呈现。

关键词Keywords

建筑物占用率Building occupancy
机器学习Machine learning
数学工具Mathematical tools

1.引言Introduction

建筑物占用率检测由于其众多且潜在的重大优点而成为一个活跃的研究领域。示例包括智能建筑服务的时空分配,如供暖、通风、空调(HVAC)和照明。在住宅和商业建筑中,将自动化(用于节能、节约成本和排放)与机器学习相结合,形成了“智能建筑”的概念。在提高安全性和识别建筑运行异常的同时,可以采用相同的数学形式,占用感知特别重要,因为它直接考虑到人类;例如,协助应急响应和提供决策支持。

占用感知是智能建筑的一个组成部分,智能建筑根据占用者偏好调整其设置,由于人类在室内的时间,因此产生基本的人机界面。早期的研究已经确定了占用感应的潜力,可将节能提高30%[1],并显著影响建筑物的室内空气质量[2]。然而,居住者行为的随机性,加上传感器的不确定性,导致了一个充满挑战的研究领域,该领域被隐私问题所困扰[3]。占用率估计可能包括几个最终目标。Lo和合著者[4-6]讨论了使用智能占用传感器降低建筑能耗和能源管理。占用率估算也越来越多地用于自适应HVAC控制和占用器照明控制[7]。这些算法实现了占用检测和基于检测到的占用优化能量使用的双重过程。通过学习用户偏好,还存在几种使用率估计的应用,以提高居住者的舒适度[8]。在智能建筑的新兴概念中,建筑物内的乘员热舒适偏好是从收集的运行数据中学习的,并且通常涉及占用率估计算法。此外,许多研究旨在发现建筑物的居住特征,以同时改善室内空气质量和居住舒适度[9]。占用率估计算法在紧急情况规划中也很有用,在紧急情况规划中,了解占用者的相对位置及其在疏散过程中的移动动态可以显著减少生命或伤害的损失[10,11]。这些场景中常用的占用率跟踪算法在实时嵌入式系统中实现,通常涉及摄像机。占用率估计有助于识别入侵者和居住者的可疑活动,并有助于提高建筑物内的安全性[12],这是入侵检测系统(IDS)的一个活跃研究领域。

尽管有大量关于建筑物占用率感知的文献和大量的评论文章,但缺乏对各种数学方法和工具的分类和组织,从而可以指定有用(或最佳)的“占用率数据结构”。这种概念构成了任何占用检测、计数或跟踪算法的主干;这里不讨论实际使用的传感器技术和测量技术的范围。我们的重点在于这些占用检测算法的数学公式。

2.建筑物占用率估算Building occupancy estimation

建筑分区占用率估算涉及到估算建筑内的居住者分布。这个问题通常包括各种各样的子问题,每个子问题都有自己的动机。在本节中,将回顾占用推断的一般问题公式,这些公式通常会导致新算法的设计。

该领域中存在的不同类型的算法可大致分为:

  • 检测算法:这些算法主要关注于检测建筑物给定区域内是否有居住者。在这一领域已经进行了重要的研究,甚至在传感器很少的情况下也取得了较高的准确率。通过使用从居住者手机和建筑物内其他电子设备收集的信号,可以轻松可靠地检测居住情况[13]。随后通常会使用支持向量机(SVM)进行k近邻聚类或分类,以确定空间是否被占用[14]。
  • 计数算法:在这类问题中,人们试图计算在某一特定时间点在某一特定空间或区域内出现的人数。要实现零误差,这个问题还有待解决。通常,从多个传感器收集的数据(有时使用CO2传感器、振动传感器甚至超声波啁啾ultrasonic chirps等创新技术)被结合起来,以产生占用计数估计。实际应用包括计算购物中心的人数[15],办公楼的人数[16],或建筑物中的非侵入性占用监控[17]。已经使用了各种各样的算法,包括有监督和无监督学习。
  • 跟踪算法:这类算法试图推断建筑物内特定乘员的运动历史(轨迹)。这还可以包括检测该人的身份。跟踪对于生物特征识别非常有用,可以提高建筑物的安全性,并在紧急情况下逃生。通常,乘员运动的先验模型是有用的。Shih[18]对建筑物的自动监控和调试实施占用检测和跟踪。

还有另外两种主要的围绕建筑物占用的问题,我们简要说明了这两种问题的完整性。预测算法预测建筑物内未来的居住模式。这些功能对于高级供暖、通风和空调(HVAC)控制和提前规划电源和资源管理(如目标能源管理和需求响应)非常有用。例如,Schwartz等人[19]使用递归算法进行每日入住率预测。模拟算法用于模拟建筑物内的占用模式。佩奇等人[20]开创了使用随机模型进行居住模拟的领域。马尔可夫模型为这些算法提供了一个良好的起点。它们有助于在建筑能耗模拟软件中模拟随机的居住者-建筑相互作用(例如,关于可操作窗户、主动遮阳系统和照明的居住者驱动操作)以及由此产生的能源和其他资源需求。

3.特征提取和数据预处理算法Algorithms for feature extraction and data preprocessing

3.1.数据空间缩减与特征提取Data space reduction and feature extraction

几乎每一种机器学习算法都需要训练数据。如前几节所述,可以使用各种技术收集数据。但是,从建筑物内安装的传感器收集的原始数据可能存在以下几个问题:

  1. 数据丢失或某些传感器突然中断。
  2. 由于某些传感器中存在误差累积或发生罕见事件而产生的非敏感数据。例如,基于门的占用计数传感器需要按一定的间隔重置。
  3. 在“情况变化不大”的情况下有大量数据。因此,没有提供有价值的信息。
  4. 传感器读数相互冲突。

前两个问题通过通常所称的“数据清理”解决。丢失的数据通常由插值数据替换,非敏感数据可能被删除或重置为传感器的初始值。数据挖掘应用中使用的一种称为最小—最大归一化的常用技术也用于从建筑物中的传感器收集的数据[21]。有时,这还可能涉及调整占用数据,以消除人员离开房间后但传感器超时之前的延迟期[22]。这适用于具有固有延迟的传感器,如CO2传感器。在将建筑用电量数据用作特征的研究中,可使用对数分块法对特征进行转换[23]。Akbar等人[24]讨论了特征缩放作为数据预处理中的一个重要过程。

最后两个问题通常使用适当的“特征选择”来处理。在机器学习术语中,特征是观察到的现象的一个单独的可测量属性或特征。在模式识别、分类和回归中,选择具有信息性、鉴别性和独立性的特征是开发有效算法的关键步骤。在大多数情况下,收集的原始数据很少直接使用,因为真实数据通常包含不需要的噪声和缺失的数据点。此外,它们之间可能具有很强的相关性,这可能会妨碍算法提取决策边界。收集的原始数据的常见后处理包括提取平均值、标准偏差、平均绝对偏差、一阶、二阶和三阶差,有时甚至是简单的移动平均值。

3.2.降维Dimensionality reduction

由于所收集数据的维数较大,可能需要使用降维技术。主成分分析(PCA)被广泛用于关键特征的识别。它采用正交变换将一组可能相关的变量转换为一组线性不相关变量的值。PCA已成功用于[25]中的特征选择。有时,排序算法用于对每个特征的重要性进行排序,前几个特征用于训练算法[26],有时,信息论度量(如互信息和相对信息增益(RIG))也用于删除不必要的特征[27]。在最基本的术语中,RIG测量两个相关变量的互信息与其中一个变量的熵的比率。某个变量(如占用率)可以固定,该变量与所有其他变量的相关性可以使用钻机进行研究。元学习算法也可用于从数据中识别关键特征,然后使用蒙特卡罗模拟识别最佳参数[28]。描述性统计和两个样本t检验也可用于确定在不同时间尺度收集的数据之间是否存在统计差异[29]。使用这些描述性统计测试可以发现关键的时间相关特征。[31]中使用了皮尔逊相关系数[30]来测试基于过滤的占用检测算法中的最佳悬浮颗粒物尺寸,该算法使用建筑物中的悬浮颗粒物来推断占用情况。

3.3.提高可靠性的信息融合Information fusion for enhanced reliability

信息融合是一种将多个信息源结合起来以可靠地对整个系统产生有意义的见解的技术。由于最近无线设备和廉价现成传感器的增长,可以从各种来源收集实时数据,包括键盘和鼠标、智能手机、GPS、RFID、可穿戴设备、连接到办公椅的传感器和其他设备等个人计算机。所有这些信息源可以聚合在一起,以推断建筑物的占用状态。信息融合作为一种与物联网(IoT)概念高度一致的方法。因此,作为一种虚拟占用感知技术,我们还包括信息融合与物联网方法一起使用的示例。Ekwevugbe等人[32]采用自适应神经模糊推理系统(ANFIS)算法进行传感器融合。来自室内环境变量、室内事件和非住宅建筑能耗的数据用于推断居住模式。在[33]中,Wang等人研究了利用信息融合和最小均方误差准则组合多个传感器的任务。作者采用独立性假设和启发式方法开发了两种近似方法,分别将现有有源RFID和摄像机系统的准确度提高了43%和73%。在大多数商业建筑中,使用区域访问徽章、Wi-Fi接入点、日历和即时消息客户端等机会上下文源是信息融合的一个极好的实践例子。Ghai等人[34]举例说明了一种算法,该算法使用上述机会主义上下文来源的信息融合。它们能够实现高达90%的占用检测精度。作者认为,使用这种“软传感器”进行占用检测比安装专用硬件要好,因为它利用了易于访问的软信息。在[35]中,Jeon等人使用基于物联网的上下文感知计算方法,通过室内悬浮颗粒物的变化模式来估计占用率。

4.占用检测算法综述Review of occupancy detection algorithms

在本节中,我们将简要介绍流行算法及其在建筑物占用检测中的使用。

4.1.概率图形模型Probabilistic graphical models

在这类算法中,需要在从传感器收集数据的变量之间学习特定的条件依赖结构。它一般由两部分组成:第一部分是学习变量依赖的结构,这是贝叶斯网络中的一个重要步骤。第二部分学习图中连通变量的条件概率分布。在几乎所有类型的图形模型中,这是一个基本步骤,通常用于计算空间被占用的概率,给定其他传感器检测事件的概率。这类算法也常见于使用各种其他传感器信息融合的占用检测和占用计数中。

在[36]中,Hutchins等人构建了单个传感器随时间变化的计数模型,并将其扩展到多个传感器。推断的基础是在已知其他传感器数据的情况下,找到占用的条件概率分布。使用马尔可夫链蒙特卡罗(MCMC)方法计算与建筑物占用率相关的观测感兴趣量和先验参数。信念网络[37]使用一组随机变量之间的条件依赖关系,并构建有向图形模型。根据[38]中传感

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值