【pytorch】训练模型第一步,加载模型和指定device

1. torch.device 选择GPU或者CPU

torch.cuda.in_available() 判断cuda是否可用
torch.device(‘cuda’) 将数据转到GPU
torch.device('cpu‘) 将数据转到CPU
torch.device('cuda:0') 指定设备号, 不指定则默认current_device
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

2. timm.create_model 加载模型

model = timm.create_model('resnet18', pretrained=True, 
pretrained_cfg_overlay=dict(file='/home/xiaoxin/Documents/hc/-/bin/pytorch_model.bin'))

3. torch.load() 加载预训练模型

如果使用cpu,则需要添加参数map_location= ‘cpu’,默认使用GPU

checkpoint_path = "0515.pth"
if os.path.exists(checkpoint_path):
    print('load checkpoint:%s'%checkpoint_path)
    checkpoint = torch.load(checkpoint_path, map_location= 'cpu')
    model_ft.load_state_dict(checkpoint, strict=False)

4. 确认模型训练的设备

#确认模型用CDEVICE训练,确认设备的情况下,也可以写成model.cuda()或者model.cpu

model.to(DEVICE)
print(model.get_classifier())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值