成为AI大模型全栈工程师需要学什么

前言

成为AI大模型全栈工程师需要掌握一系列的技能和知识,涉及多个领域。以下是一些关键的学习内容:

1、数学基础: 深入学习线性代数、概率论与统计学、微积分等数学基础知识。这些数学基础是理解AI算法和模型的核心,对于后续的学习和实践至关重要。

2、计算机科学基础: 加强对计算机科学核心课程如数据结构、算法、计算机网络、操作系统和数据库的理解。这些知识对于构建和维护AI系统至关重要,能够帮助你更好地理解和应用AI技术。

3、编程语言: 掌握至少一门主流的编程语言,如Python、Java或C++。Python是AI领域中使用最广泛的语言,因为它具有丰富的库和框架,如TensorFlow、PyTorch等。熟悉这些编程语言和框架将使你能够更高效地开发AI模型和应用。

4、机器学习: 学习机器学习的基本原理、常见的算法和模型,如线性回归、决策树、支持向量机和神经网络等。这将帮助你理解AI模型的工作原理,并学会如何应用这些算法和模型解决实际问题。

在这里插入图片描述

5、深度学习: 深度学习是AI领域的热门技术,掌握深度学习将是你成为优秀AI工程师的重要一步。你需要学习深度学习的基本原理、常见的神经网络结构,以及使用深度学习框架(如TensorFlow或PyTorch)进行模型训练和优化的技巧。

6、数据处理与特征工程: AI大模型全栈工程师需要具有丰富的数据处理和特征工程经验,能够高效处理大规模数据。你需要学会如何收集、清洗和处理数据,以及如何提取和选择有效的特征,为模型训练提供必要支持。

7、模型设计与开发: 根据项目需求,设计并开发大模型,包括模型架构、算法和参数优化。你需要学会如何选择合适的模型结构、算法和参数,以及如何进行模型的训练和调优,以达到最佳的性能表现。

8、部署与运维: 将模型部署到服务器,并进行日常运维和监控,确保模型稳定运行。你需要了解模型部署的流程和注意事项,以及如何进行模型的监控和维护,以确保模型的稳定性和可靠性。

除了以上具体的学习内容,还需要具备出色的问题解决能力和团队合作精神,能够应对各种技术挑战。此外,良好的英语读写能力也将有助于你阅读和理解国际前沿的研究论文,从而不断提升自己的技术水平。

请注意,学习成为AI大模型全栈工程师是一个持续的过程,需要不断学习和实践,掌握最新的技术和方法。通过参加相关的课程、培训和实践项目,你可以不断提升自己的技能和知识,为成为一名优秀的AI大模型全栈工程师打下坚实的基础。

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

AI大模型工程师是指在人工智能大模型领域具有面技术能力的工程师。他们不仅能够熟练掌握深度习、机器习等人工智能领域的核心算法和模型架构,还能够进行端到端的开发和实现,具备完整的技术堆知识。 首先,AI大模型工程师需要精通深度习和机器习的算法原理,包括神经网络、卷积神经网络、循环神经网络等各种模型结构和优化方法。他们需要能够灵活运用这些算法,解决各种复杂的人工智能问题。 其次,AI大模型工程师需要熟练掌握各种开发工具和框架,例如TensorFlow、PyTorch、Keras等,能够在这些框架下进行模型的实现和训练。 此外,AI大模型工程师还需要具备数据处理和分析的能力,能够处理海量的数据,并能够进行数据挖掘和特征工程,为模型训练提供高质量的数据。 最后,AI大模型工程师需要具备工程实现和部署的能力,能够将训练好的模型应用于实际的场景中,包括模型的优化和性能调优,以及模型的部署和服务化。 总之,AI大模型工程师需要具备面的人工智能技术能力,涵盖算法原理、开发工具、数据处理和工程实现等方面,能够独立完成从建模到部署的流程工作。这样的工程师人工智能技术领域具有很高的竞争力,能够为企业和团队带来更多的价值和发展机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值