文章目录
前言
AI智能体架构于 2023 年 3 月诞生,但直到几个月后才在开源社区中扎根。智能体领域可能仍然看起来像是一种“疯狂科学家”式的实验,但已经有一些非常强大的模型可以尝试,本文介绍其中最流行的11个开源AI Agent框架。
NSDT工具推荐:Three.js AI纹理开发包
1、AutoGPT
AutoGPT 由视频游戏公司 Significant Gravitas Ltd. 的创始人 Toran Bruce Richards 开发,是继 Nakajima 的论文之后于 2023 年 3 月推出的早期代理之一。它也是当今 GitHub 上最受欢迎的代理 repo。
AutoGPT 背后的想法很简单——它是一个完整的工具包,用于为各种项目构建和运行自定义 AI 代理。该工具使用 OpenAI 的 GPT-4 和 GPT-3.5 大型语言模型 (LLM),允许你为各种个人和商业项目构建代理。
2、BabyAGI
BabyAGI 是 Nakajima 的任务驱动型自主智能体的精简版。Python 脚本只有 140 个字的代码,根据官方 GitHub 存储库,“使用 OpenAI 和 Chroma 或 Weaviate 等矢量数据库来创建、确定优先级和执行任务。”
自推出以来,BabyAGI 已分支出几个有趣的项目。其中一些项目(如 twitter-agent 或 Slack 上的 BabyAGI)将智能体的强大功能带到了现有平台。其他项目则添加了插件和附加功能,或将 BabyAGI 移植到其他语言(例如 babyagi-perl)。
BabyAGI 智能体循环
3、SuperAGI
SuperAGI 是 AutoGPT 更灵活、更用户友好的替代方案。你可以将其视为开源 AI 智能体的启动板,它提供了构建、维护和运行自己的代理所需的一切。它还包括插件和云版本,您可以在其中进行测试。
该框架具有多个 AI 模型、图形用户界面、与矢量数据库的集成(用于存储/检索数据)和性能洞察。还有一个带有工具包的市场,可让你将其连接到流行的应用和服务,例如 Google Analytics。
4、ShortGPT
在生成内容方面,AI 模型的表现非常出色。但直到最近,视频格式仍然在很大程度上得不到充分支持。ShortGPT 是一个框架,它允许你使用大型语言模型来简化视频创建、语音合成和编辑等复杂任务。
ShortGPT 可以处理大多数典型的视频相关任务,例如编写视频脚本、生成画外音、选择背景音乐、编写标题和描述,甚至编辑视频。无论使用哪个平台,该工具都适用于短视频内容和长视频内容。
5、ChatDev
CoPilot、Bard、ChatGPT 和许多其他软件都是功能强大的编码助手。但 ChatDev 等项目可能很快就会让它们一败涂地。ChatDev 被称为“虚拟软件公司”,它使用的智能体不止一个,而是多个,在传统的开发组织中扮演不同的角色。
这些智能体(每个代理都分配了一个独特的角色)可以协作处理各种任务,从设计软件到编写代码和文档。雄心勃勃?没错。ChatDev 仍然更像是智能体交互的试验台,但如果你自己是一名开发人员,它值得一试。
6、AutoGen
在向 OpenAI 投入 130 亿美元并使 Bing 变得更加智能之后,微软现在已成为人工智能领域的主要参与者。其AutoGen是一个开源框架,用于开发和部署多个智能体,这些智能体可以协同工作以自主实现目标。
AutoGen 中的对话流程示例
AutoGen 试图促进和简化智能体之间的通信,减少错误并最大限度地提高 LLM 的性能。它还具有广泛的自定义功能,允许你选择首选模型,通过人工反馈改进输出,并利用其他工具。
7、MetaGPT
MetaGPT是另一个开源 AI 智能体框架,它试图模仿传统软件公司的结构。与 ChatDev 类似,智能体被分配了产品经理、项目经理和工程师的角色,并协作完成用户定义的编码任务。
到目前为止,MetaGPT 只能处理中等难度的任务——比如编写贪吃蛇游戏或构建简单的实用程序应用程序——但它是一个很有前途的工具,未来可能会迅速发展。生成一个完整的项目将花费你大约 2 美元的 OpenAI API 费用。
8、Camel
我们在之前的一篇文章中写过关于Camel的内容,从那时起,这个项目就一直在发展。简而言之,Camel 是早期的多智能体框架之一,它使用独特的角色扮演设计,使多个智能体能够相互通信和协作。
两个 ChatGPT 代理之间的对话
一切都始于一项人类定义的任务。该框架利用 LLM 的强大功能动态地为智能体分配角色,指定和开发复杂的任务,并安排角色扮演场景,以实现智能体之间的协作。这就像人工智能的剧场。
9、Loop GPT
LoopGPT是 Toran Bruce Richards 的 AutoGPT 的一个迭代。除了适当的 Python 实现之外,该框架还带来了对 GPT-3.5、集成和自定义智能体功能的改进支持。它还消耗更少的 API 令牌,因此运行起来要便宜得多。
LoopGPT 可以基本自动运行,也可以在循环中由人参与运行,以最大限度地减少模型幻觉。有趣的是,该框架不需要访问矢量数据库或外部存储来保存数据。它可以将代理状态写入文件或 Python 项目。
10、JARVIS
JARVIS远不及托尼·史塔克的标志性 AI 助手(保罗·贝坦尼的声音同样具有标志性),但它有一些绝招。使用 ChatGPT 作为其“决策引擎”。JARVIS 处理任务规划、模型选择、任务执行和内容生成。
使用 JARVIS 进行规划、模型选择、执行和生成
通过访问 HuggingFace 中心中的数十个专用模型,JARVIS 利用 ChatGPT 的推理能力将最佳模型应用于给定任务。这使其在执行各种任务时都具有相当迷人的灵活性,从简单的摘要到对象检测。
11、OpenAGI
OpenAGI是一个开源 AGI(通用人工智能)研究平台,结合了小型专家模型(针对情绪分析或图像去模糊等任务量身定制的模型)和任务反馈强化学习 (RLTF),以提高其输出。
从本质上讲,OpenAGI 与其他自主开源人工智能框架没有太大区别。它汇集了 ChatGPT 等流行平台、LLaMa2 等 LLM 和其他专用模型,并根据任务上下文动态选择正确的工具。
12、结束语
自主智能体的世界令人着迷、引人注目且发展迅速。随着 GPT-4、Bard 和 LlaMa2 等 AI 模型的更快、更准确、更大规模迭代的出现,我们很可能在未来几个月看到更多令人兴奋的突破。
谁知道呢?也许智能体是 AI 革命的下一个里程碑。它将使我们更接近阿西莫夫、莱姆和斯蒂芬森创造的世界(即使我们宁愿放弃技术反乌托邦)。当人类和人工智能一起工作时,生产力的新时代。
那么,你准备好加入这场革命了吗?
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】