2025人工智能最常见的52个相关岗位!(一些过来人的经验)

人工智能最常见的52个相关岗位!超级基础的人工智能学习路线!一步入门。大家都知道人工智能是高薪领域,不同公司、不同行业、不同职级、不同工作经验会有不同的薪资报酬。

我身边年龄相仿的做Al的朋友,有40万的,有80万的,也有100多万的,这和个人的努力是分不开的,今天就来给想进人工智能的宝子们带来一份很基础的学习路线,需要的赶紧码住!

高清人工智能学习路线文末领取

  1. 人工智能学习路线数学、Python、Numpy、Pandas、数据可视化、特征工程、scikit-learn、机器学习、深度学习

  2. 数学相关书籍:《程序员的数学》、《统计学概论》、《线性代数》相关课程:麻省理工《计算机数学基础》

  3. Python相关书籍:《看漫画学Python》相关课程:《Python全632集课程》、《看漫画学Python 》

  4. 机器学习:相关书籍:《机器学习》周志华、《机器学习基础》、《渴望机器学习》吴恩达相关课程:《吴恩达机器学习》、《李宏毅机器学习课程》

    深度学习:相关书籍:《动手学深度学习》、《图解深度学习》、《深度学习》相关课程:《吴恩达深度学习》、《李宏毅深度学习课程》

    其他资料:1000+人工智能书籍100份人工智能相关行业报告500+份人工智能论文资料各大高校人工智能课程清单人工智能培训机构调研对比想要了解人工智能的宝子快来收藏吧!

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

<think>好的,用户想了解与AI相关的职位信息,特别是职位名称和要求。首先,我需要整理已知的引用内容,看看有没有直接相关的信息。引用[1]提到了机器学习工程师,这是一个很好的起点。另外,引用[3]提到聊天机器人如ChatGPT的应用,可能涉及自然语言处理工程师的职位。虽然引用[2]和[4]讨论AI的影响和监管,但可能和职位要求关联不大,暂时先不考虑。 接下来,我需要列举常见的AI职位,除了机器学习工程师和自然语言处理工程师外,还有数据科学家、AI产品经理、计算机视觉工程师、AI研究员等。每个职位的职责和要求需要详细说明,比如学历背景、技能要求、工作经验等。 用户可能还关心这些职位的薪资水平、行业需求以及如何入行,但根据问题,主要聚焦在职位名称和要求上。需要确保每个职位的描述准确,并引用提供的引用内容中的相关信息,比如引用[1]提到机器学习工程师是高收入职位,可以强调这一点。 同时,注意用户提到的职位要求可能包括技术技能(如编程语言、算法知识)和软技能(如问题解决能力、团队合作)。需要分点说明,结构清晰。例如,机器学习工程师可能需要掌握Python、TensorFlow,而自然语言处理工程师可能需要熟悉NLP库如NLTK或spaCy。 最后,生成相关问题,帮助用户进一步探索,比如如何准备面试、学习路径等。确保问题与主题相关,并且基于已有的引用内容,比如引用[3]提到的内容创作任务,可以关联到生成相关应用场景的问题。</think>### 人工智能相关职位及要求 #### 1. **机器学习工程师 (Machine Learning Engineer)** **职责**:设计、开发和部署机器学习模型,优化算法性能,解决实际业务问题(如推荐系统、预测分析)。 **核心要求**: - 计算机科学、数学或统计学硕士/博士学位[^1] - 熟练使用Python/R及框架(如TensorFlow、PyTorch) - 熟悉数据预处理、特征工程和模型评估 - 具备分布式计算(如Spark)和云计算平台(AWS/GCP)经验 **薪资水平**:属于AI领域收入最高的职位之一 --- #### 2. **自然语言处理工程师 (NLP Engineer)** **职责**:开发文本分析、语音识别或对话系统(如ChatGPT类聊天机器人),优化语义理解能力[^3]。 **核心要求**: - 语言学、计算机科学相关专业背景 - 掌握NLP技术(词嵌入、Transformer架构)及工具(NLTK、spaCy) - 熟悉预训练模型(如BERT、GPT)的微调与应用 --- #### 3. **数据科学家 (Data Scientist)** **职责**:通过数据分析驱动决策,构建统计模型,支持AI系统数据管道。 **核心要求**: - 统计学或数据科学硕士学历 - 精通SQL、Pandas及可视化工具(Tableau) - 熟悉A/B测试和假设验证方法 --- #### 4. **AI产品经理 (AI Product Manager)** **职责**:定义AI产品需求,协调技术团队与业务部门,推动产品落地。 **核心要求**: - 技术背景(计算机科学/工程)结合MBA优先 - 理解机器学习生命周期及伦理风险[^4] - 具备敏捷开发项目管理经验 --- #### 5. **计算机视觉工程师 (Computer Vision Engineer)** **职责**:开发图像/视频处理系统(如人脸识别、自动驾驶感知模块)。 **核心要求**: - 熟悉OpenCV、CNN、目标检测算法(YOLO) - 掌握C++/Python及深度学习框架 --- ### 通用能力要求 - **数学基础**:线性代数、概率论、优化理论 - **编程能力**:Python为主,C++/Java为辅 - **工具链**:Git、Docker、MLOps工具 - **软技能**:跨学科沟通、创新问题解决 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值