大模型应用开发入门系列(1):Hello LangChain

大模型应用开发入门系列(1):Hello LangChain

我们在以前学习任何语言第一个入门小demo都是写一个Hell World!,同样我们在学习LangChain框架的时候,也以类似输出一个“Hell World!”的简单回复作为我们的入门demo案例

1. 环境配置

在正式开始LangChain的实战学习前,需要配置一下环境。LangChain框架目前支持Python和TypeScript两种语言,这里我们选用处理人工智能更主流的Python语言来进行学习,有关JavaScript LangChain库的文档,可以点击这里。LangChain目前已经更新到了v3版本,所以同样我们也以最新的v3版本来进行学习。

1.1 编辑器

编辑器推荐使VSCode,然后再对应的编辑器里安装python即可,再安装python插件之前,请确保自身机器已经安装了python。因为LangChain框架使用python写的,所以学习LangChain需要一点python基础,这里额就不再赘述python的环境安装了

1.2 安装Jupyter插件

数据科学,机器学习的开发一般是在Jupyter上进行,所以需要在VSCode或者Cursor上安装Jupyter插件

img

如上图所示,在插件中心,直接搜索Jupyter,然后install即可

1.3 LangChain安装

可以直接用python的包管理工具来安装LangChain,直接运行以下命令即可

pip install langchain

这个命令会把langchain做需要的所有依赖包都安装好

2. 通过LangChain跟DeepSeek对话

注:本教程的项目根目录为LangChain-Course,在实践的时候,自己随便创建一个目录作为根目录都是可以的

2.1 创建DeepSeek的API Key

要调用DeepSeek的API,首先需要有一个DeepSeek的API Key,可以前往https://platform.deepseek.com/api_keys去创建

img

创建完之后,需要记住这个key,因为后续我们在创建DeepSeek模型的时候会用到,这里我们将其保存到一个.env文件中,在python项目中,一般用.env文件来保存一些环境变量。我们在项目根目录下创建.env文件,然后在文件编辑如下代码,保存API Key

DEEPSEEK_API_KEY=sk-c3d343215a0d4336a86d4b3c******  #这里替换为你创建的API key

2.2 安装LangChain集成的DeepSeek模型

执行以下命令,安装DeepSeek模型依赖

pip install langchain-deepseek

2.3 代码实践

在根目录下创建hello-langchain.ipynb文件,在文件中编辑如下代码,创建一个DeepSeek 聊天模型实例,然后尝试跟DeepSeek聊天

# 导入 lanchain集成的 DeepSeek 聊天模型
from langchain_deepseek import ChatDeepSeek
# 导入环境变量加载工具
from dotenv import load_dotenv
# 导入操作系统相关功能
import os

# 加载 .env 文件中的环境变量
load_dotenv()

# 创建 DeepSeek 聊天模型实例
chat = ChatDeepSeek(
        temperature=0,  # temperature=0 表示输出更加确定性,不会随机性太强
        model="deepseek-chat",  # 指定使用的模型名称
        api_key=os.getenv("DEEPSEEK_API_KEY") # 从环境变量中获取 API 密钥
    )

# 定义对话消息列表,包含系统角色消息和用户角色消息
messages = [
    {"role": "system", "content": "你是一个有帮助的AI助手。"}, # system 消息定义了 AI 助手的角色和行为
    {"role": "user", "content": "你好!请介绍一下你自己。"} # user 消息是用户的实际输入
]

# 调用模型生成回复,invoke 方法接收消息列表作为输入,模型会根据系统角色和用户输入生成合适的回复
response = chat.invoke(messages)

# 打印 AI 助手的回复内容
print(response.content)

程序输出如下:

你好!我是一个由OpenAI开发的人工智能助手,旨在通过自然语言处理和机器学习技术来帮助用户解答问题、提供信息、执行任务和进行对话。我可以协助你完成各种任务,比如查找信息、学习新知识、解决问题、提供建议等。

我的知识库涵盖了广泛的主题,包括科学、技术、历史、文化、语言等,并且我会不断更新和学习新的信息。如果你有任何问题或需要帮助,随时可以问我!

代码中每行代码的都有清晰的注释,也很简单,这里就不再做代码拆解了

运行示例:

img

小结

本章主要是介绍了LangChain开发环境的配置,然后安装了langchain-deepseek依赖,通过LangChain框架写了一个简单的跟DeepSeek对话的小demo

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

### LangChain4j 的入门教程 LangChain4j 是 Java 领域中的一个框架,旨在帮助开发者轻松集成人工智能技术到他们的应用程序中。以下是关于如何使用 LangChain4j 进行开发的一些基础知识和示例代码。 #### 1. 设置环境 为了开始使用 LangChain4j,首先需要设置项目依赖项。可以通过 Maven 或 Gradle 添加所需的库。例如,在 `pom.xml` 文件中添加以下内容: ```xml <dependency> <groupId>com.langchain4j</groupId> <artifactId>langchain4j-core</artifactId> <version>0.0.1</version> </dependency> ``` 如果计划使用 OpenAI 等外部服务,则还需要引入相应的客户端库,并确保已获取有效的 API 密钥[^3]。 #### 2. 创建第一个应用 下面是一个简单的 Hello World 示例程序,展示如何初始化 LLM 并调用其功能: ```java import com.langchain4j.llm.openai.OpenAILanguageModel; import com.langchain4j.LLMLanguageModel; public class HelloWorldExample { public static void main(String[] args) { String apiKey = "your-openai-api-key"; // 替换为您的实际密钥 LLMLanguageModel llm = new OpenAILanguageModel(apiKey); String prompt = "Tell me a joke"; String response = llm.generate(prompt); System.out.println(response); } } ``` 此代码片段展示了如何加载预训练的语言模型以及向该模型发送请求以获得响应[^4]。 #### 3. 定制化处理流程 类似于 Python 版本的功能扩展方式,Java 用户也可以定义自己的数据处理器逻辑并与现有链路相结合。比如实现一个新的分词器类 `CustomTokenizer` 来替代默认行为: ```java import com.langchain4j.processor.TextProcessor; public class CustomTokenizer implements TextProcessor { @Override public List<String> process(String input){ return Arrays.asList(input.split("\\s+")); } } // 注册自定义处理器 LangChain.registerProcessor("custom_tokenizer",new CustomTokenizer()); ``` 上述操作允许我们灵活调整输入文本的解析策略,从而更好地适配特定应用场景下的需求[^1]。 #### 4. 构建复杂对话系统 除了基本的文字生成外,还可以进一步利用 LangChain 提供的各种工具组件搭建更复杂的交互式系统。例如基于检索的知识问答、多轮次会话管理等功能都可以在此基础上逐步完善起来[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值