线性代数学习笔记(十七)——初等变换(三)

本篇笔记首先回顾了伴随矩阵法求逆矩阵,因为过程过于复杂,所以引出初等变换法求逆矩阵,并推导了初等变换法求逆矩阵的思路;然后通过一个例子介绍了初等变换法求逆矩阵的过程,并对注意事项进行了总结;最后还讨论了通过初等变换判断矩阵可逆性、初等变换与行列式值的关系以及初等变换法求逆矩阵解题过程思路和总结。

1 初等变换法求逆矩阵

在之前的博客【线性代数学习笔记(十三)——逆矩阵(二)】介绍过伴随矩阵法求逆矩阵,即 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A。但在考试做题时从来不用伴随矩阵法求逆矩阵,因为该方法计算量非常大,过于复杂而且容易出错。在考试做题时一般用初等变换法求逆矩阵。

假设 A A A可逆,那么 A − 1 A^{-1} A1也可逆,并且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
根据上一篇博客【线性代数学习笔记(十六)——初等变换(二)】定理5可知:
A − 1 A^{-1} A1可以表示成一些初等矩阵( Q 1 , Q 2 , . . . , Q T Q_1, Q_2, ..., Q_T Q1,Q2,...,QT)的乘积,
即: A − 1 = Q 1 Q 2 . . . Q T ① A^{-1}=Q_1Q_2... Q_T\qquad① A1=Q1Q2...QT
① ① 式两边同时右乘 A A A,得到:
Q 1 Q 2 . . . Q T A ‾ = E ② \color{red}{Q_1Q_2... Q_T\underline{A}=E\qquad②} Q1Q2...QTA=E
① ① 式初等矩阵后右乘单位阵 E E E,得到:
Q 1 Q 2 . . . Q T E ‾ = A − 1 ③ \color{red}{Q_1Q_2... Q_T\underline{E}=A^{-1}\qquad③} Q1Q2...QTE=A1

现在的问题是:给定矩阵 A A A,求 A − 1 = ? A^{-1}=? A1=?
观察 ② ② 式不难发现, A A A左乘 Q T , . . . , Q 2 Q 1 Q_T, ..., Q_2Q_1 QT,...,Q2Q1,相当于经过了 t t t次初等变换,最终 A A A化为单位阵 E E E
观察 ③ ③ 式同样发现, E E E左乘 Q T , . . . , Q 2 Q 1 Q_T, ..., Q_2Q_1 QT,...,Q2Q1,相当于经过了 t t t次初等变换,最终 E E E化为单位阵 A − 1 A^{-1} A1

将上述 ② ② 式和 ③ ③ 式一起看的话, A A A E E

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值