【科研绘图】【堆积柱状图】:附Origin详细画图流程

图片

目录

No.1 理解堆积柱状图

No.2 画图流程

1 导入数据,并绘图

2 设置绘图细节

3 设置坐标轴

4 效果图


No.1 理解堆积柱状图

  • 堆积柱状图,是一种柱状图的变体,通过在同一柱形上堆叠不同类别的矩形柱来表示数据。每个类别的矩形柱高度代表该类别的数据量,而整个柱形的高度则代表所有类别的数据总量。这种图表形式不仅清晰地展示了各个类别在整体中的占比情况,还通过柱形的堆叠直观地反映了各类别之间的相对大小关系。

No.2 画图流程

1 导入数据,并绘图

  • 选中数据→点击“绘图”→点击“条形图 饼图 面积图”→点击“堆积柱状图”

图片

### 使用Origin绘制深度学习图表的方法 对于深度学习模型训练过程中的性能指标可视化,可以利用Origin强大的绘图功能来展示损失函数变化、准确率提升等情况。由于深度学习产生的数据通常较为复杂且波动较大,在处理这类数据时,可借鉴Python中matplotlib配合高斯滤波的做法以平滑曲线[^1]。 #### 导入深度学习实验数据 为了在Origin里呈现深度学习的结果,第一步是要将保存下来的日志或者记录文件转换成适合软件读取的形式。按照指导说明,支持Excel表格形式的数据集输入方式;另外也接受纯文本格式(txt),只需简单地把目标文档拖拽至程序窗口内部完成加载操作即可[^2]。 #### 创建并优化图形表达 一旦成功载入所需资料之后,则可以根据具体需求挑选合适的图表样式来进行下一步编辑调整。针对神经网络迭代过程中所产生的大量数值型序列,折线图是一个不错的选择因为它能直观反映出随时间推移而发生的改变趋势。如果遇到原始数据显示杂乱无章的情形,不妨尝试应用内置的过滤器选项或是自定义脚本来实现类似于上述提到过的信号降噪效果。 ```python import numpy as np from scipy.ndimage import gaussian_filter1d # 假设这是从CSV文件读取出来的epoch和loss列表 epochs = list(range(0, 100)) raw_losses = np.random.rand(len(epochs)) * 2 + epochs[::-1] smoothed_losses = gaussian_filter1d(raw_losses, sigma=3) plt.plot(epochs, raw_losses, label='Raw Loss') plt.plot(epochs, smoothed_losses, color="red", linewidth=2, linestyle="-.", label='Smoothed Loss') plt.legend() plt.show() ``` 此段代码展示了如何通过Python先对外部获取来的未经加工的信息做初步整理再导出给Origin进一步美化的过程。值得注意的是这里仅作为演示用途,并非实际运行于Origin环境之内而是借助外部工具辅助准备更易解析的内容结构供后续调用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值