一个三维坐标经过三维放射变换矩阵变为对应的新的三维坐标经过的具体变换过程

三维仿射变换矩阵可以用来描述三维空间中的平移、旋转和缩放操作。如果有一个三维坐标向量 P=(x,y,z,1)T,其中 T 表示转置,这个向量中的最后一项 1 是齐次坐标中的齐次项。

三维仿射变换矩阵是一个4x4的矩阵,通常表示为:

|  a11  a12  a13  tx |
|  a21  a22  a23  ty |
|  a31  a32  a33  tz |
|   0    0    0    1 |

其中,a11, a12, a13, a21, a22, a23, a31, a32, a33 表示旋转和缩放部分,(tx, ty, tz) 表示平移部分。最后一行 (0, 0, 0, 1) 是一个辅助行,用于表示齐次坐标。

这个矩阵描述了从一个坐标系到另一个坐标系的仿射变换,包括平移、旋转和缩放。在这个表示中,前三列(a11, a21, a31)、(a12, a22, a32)、(a13, a23, a33)表示旋转和缩放的部分,最后一列(tx, ty, tz)表示平移。最后一行表示齐次坐标的一部分,确保在矩阵乘法中的正确性。

这个矩阵的使用可以通过矩阵乘法将其应用于一个三维坐标,以执行仿射变换。

在三维仿射变换矩阵中,旋转和缩放是通过一个3x3的矩阵表示的,主要原因是在三维空间中,旋转和缩放是围绕坐标原点进行的线性变换。线性变换可以通过一个矩阵来表示,这个矩阵就是3x3的旋转矩阵。

这样组合起来,我们得到了一个4x4的仿射变换矩阵,其中前三列是旋转和缩放矩阵,最后一列是平移矩阵。最后一行是辅助行,保证了齐次坐标的正确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值