文章目录
一、CMOS反相器工作原理
CMOS反相器由NMOS和PMOS组成,如图1所示。PMOS和NMOS的衬底分开,PMOS的衬底接最高电位
V
D
D
V_{DD}
VDD,NMOS的衬底接最低电位地GND。NMOS的源极接地,漏极接高电位
V
o
V_o
Vo,PMOS的源极接
V
D
D
V_{DD}
VDD,漏极接低电位
V
o
V_o
Vo。NMOS和PMOS管的栅极同时接输入信号
V
i
V_i
Vi。
C
L
C_L
CL为负载电容。
如图2(a),当
V
i
n
:
V
D
D
→
0
V_{in}: V_{DD}→0
Vin:VDD→0(逻辑1变逻辑0)时,上拉PMOS开始工作,NMOS断开,向负载电容
C
L
C_L
CL充电至
V
D
D
V_{DD}
VDD,输出
V
o
u
t
:
0
→
V
D
D
V_{out}: 0→V_{DD}
Vout:0→VDD(逻辑0变逻辑1)。
如图2(b),当
V
i
n
:
0
→
V
D
D
V_{in}: 0→V_{DD}
Vin:0→VDD(逻辑0变逻辑1)时,下拉NMOS开始工作,PMOS断开,负载电容
C
L
C_L
CL放电至0V,输出
V
o
u
t
:
V
D
D
→
0
V_{out}: V_{DD}→0
Vout:VDD→0(逻辑1变逻辑0)。
二、CMOS反相器静态特性
基于图1电路和MOS管的输出特性曲线,可以得到图3。
如图4,通过公式转换,将PMOS管的输出特性曲线转换到与NMOS管相同的坐标系。
根据图解法叠加NMOS和PMOS管的输出特性曲线可以得到,CMOS反相器的负载曲线
由于通过NMOS和PMOS器件的电流相等且输入
V
i
n
V_{in}
Vin相同,可以得到图5中6个圆点,并将圆点处的
V
i
n
V_{in}
Vin和
V
o
u
t
V_{out}
Vout整理可以得到反相器的电压传输特性曲线,如图6。
三、CMOS反相器动态特性
时延参数
器件的时延表示一个信号通过一个器件所经历的时间,为器件一种动态特性。时延参数包括上升时间
t
r
t_r
tr,下降时间
t
f
t_f
tf,上升传输延迟
t
p
L
H
t_{pLH}
tpLH,下降传输延迟
t
p
H
L
t_{pHL}
tpHL,如图7。
上升时间
t
r
t_r
tr:假设输出信号
V
o
u
t
V_{out}
Vout高电平为
V
D
D
V_{DD}
VDD,当输出为上升沿时,上升时间
t
r
t_r
tr等于输出信号为10%
V
D
D
V_{DD}
VDD到输出信号为90%
V
D
D
V_{DD}
VDD的时间差。
下降时间
t
f
t_f
tf:假设输出信号
V
o
u
t
V_{out}
Vout高电平为
V
D
D
V_{DD}
VDD,当输出为下降沿时,下降时间
t
f
t_f
tf等于输出信号为90%
V
D
D
V_{DD}
VDD到输出信号为10%
V
D
D
V_{DD}
VDD的时间差。
上升传输延迟
t
p
L
H
t_{pLH}
tpLH:假设输入信号
V
i
n
V_{in}
Vin和输出信号
V
o
u
t
V_{out}
Vout高电平均为
V
D
D
V_{DD}
VDD,当输出为上升沿时,上升传输延迟
t
p
L
H
t_{pLH}
tpLH等于输入信号为50%
V
D
D
V_{DD}
VDD到输出信号为50%
V
D
D
V_{DD}
VDD的时间差。
下降传输延迟
t
p
H
L
t_{pHL}
tpHL:假设输入信号
V
i
n
V_{in}
Vin和输出信号
V
o
u
t
V_{out}
Vout高电平均为
V
D
D
V_{DD}
VDD,当输出为下降沿时,下降传输延迟
t
p
H
L
t_{pHL}
tpHL等于输入信号为50%
V
D
D
V_{DD}
VDD到输出信号为50%
V
D
D
V_{DD}
VDD的时间差。
四、上升 t r t_r tr和下降 t f t_f tf时间模型
1. 计算前提
为了简化计算难度,假设:
- V i n V_{in} Vin是阶跃的;
- 忽略MOS本征延迟(intrinsic delay);
- 负载电容C_L等效为固定电容;
2. 上升时间 t r t_r tr
当输入信号为由1到0的阶跃信号时,上拉PMOS器件开始工作,NMOS断开,输出为高电平,
C
L
C_L
CL开始充电,此时开关模型可以等效为一阶RC网络,如图8。
由PMOS对
V
o
u
t
V_{out}
Vout节点处的电容充电可得流过PMOS的电流
I
D
P
I_{DP}
IDP
I
D
P
=
C
L
d
V
o
u
t
d
t
I_{DP}=C_L\frac{dV_{out}}{dt}
IDP=CLdtdVout
忽略沟道长度调制效应,NMOS器件的I-V输出特性为
I
D
=
μ
n
C
O
X
W
L
[
(
∣
V
G
S
∣
−
∣
V
T
∣
)
∣
V
D
S
∣
−
V
D
S
2
2
]
∣
V
D
S
∣
<
∣
V
G
S
∣
−
∣
V
T
∣
(
线性区
)
I_D= \frac{μ_n C_{OX} W}{L} [(|V_{GS} |-|V_T|)|V_{DS}|- \frac{V_{DS}^2}{2}] |V_{DS}|<|V_{GS} |-|V_T|(线性区)
ID=LμnCOXW[(∣VGS∣−∣VT∣)∣VDS∣−2VDS2]∣VDS∣<∣VGS∣−∣VT∣(线性区)
I
D
=
μ
n
C
O
X
2
W
L
(
∣
V
G
S
∣
−
∣
V
T
∣
)
2
∣
V
D
S
∣
≥
∣
V
G
S
∣
−
∣
V
T
∣
(
饱和区
)
I_D= \frac{μ_n C_{OX}}{2} \frac{W}{L} (|V_{GS}|-|V_T|)^2 |V_{DS}|≥|V_{GS} |-|V_T| (饱和区)
ID=2μnCOXLW(∣VGS∣−∣VT∣)2∣VDS∣≥∣VGS∣−∣VT∣(饱和区)
由于输入信号为由1到0的阶跃信号时,输出由0到1过渡,根据图8可以得到
V
o
u
t
=
V
D
D
−
V
D
S
V_{out}=V_{DD}-V_{DS}
Vout=VDD−VDS,
V
G
S
=
V
i
n
−
V
D
D
V_{GS}=V_{in}-V_{DD}
VGS=Vin−VDD,由于假设输入信号为理想的阶跃信号,可得
V
i
n
=
0
V
V_{in}=0V
Vin=0V,
V
G
S
=
−
V
D
D
V_{GS}=-V_{DD}
VGS=−VDD。综上所述
V
D
S
=
V
D
D
−
V
o
u
t
V_{DS}=V_{DD}-V_{out}
VDS=VDD−Vout,
∣
V
G
S
∣
−
∣
V
T
P
∣
=
∣
V
D
D
∣
−
∣
V
T
P
∣
|V_{GS}|-|V_{TP} |=|V_{DD}|-|V_{TP} |
∣VGS∣−∣VTP∣=∣VDD∣−∣VTP∣(
V
T
P
V_{TP}
VTP为PMOS管的阈值电压)。所以当
V
D
D
−
V
o
u
t
≥
∣
V
D
D
∣
−
∣
V
T
P
∣
V_{DD}-V_{out}≥|V_{DD}|-|V_{TP}|
VDD−Vout≥∣VDD∣−∣VTP∣时PMOS处于饱和区,如图
t
1
t_1
t1~
t
T
P
t_{TP}
tTP段,当
V
D
D
−
V
o
u
t
<
∣
V
D
D
∣
−
∣
V
T
P
∣
V_{DD}-V_{out}<|V_{DD} |-|V_{TP} |
VDD−Vout<∣VDD∣−∣VTP∣时PMOS处于线性区,如图9中的
t
T
P
t_{TP}
tTP~
t
2
t_2
t2段。
当
V
o
u
t
≤
∣
V
T
P
∣
V_{out}≤|V_{TP} |
Vout≤∣VTP∣时,PMOS处于饱和区,根据PMOS的输出特性,此时PMOS的输出电流
I
D
P
I_{DP}
IDP为
I
D
P
=
μ
p
C
o
x
2
W
L
(
V
D
D
−
∣
V
T
P
∣
)
2
=
C
L
d
V
o
u
t
d
t
I_{DP}= \frac{ μ_p C_ox}{2} \frac{W}{L} (V_{DD}-|V_{TP} |)^2=C_L \frac{dV_out}{dt}
IDP=2μpCoxLW(VDD−∣VTP∣)2=CLdtdVout
可得
d
t
=
2
L
C
L
d
V
o
u
t
μ
n
C
O
X
W
(
V
D
D
−
∣
V
T
P
∣
)
2
dt=\frac{2LC_LdV_{out}}{μ_n C_{OX} W(V_{DD}-|V_{TP} |)^2 }
dt=μnCOXW(VDD−∣VTP∣)22LCLdVout
对
V
D
D
V_{DD}
VDD,
V
T
P
V_{TP}
VTP,
V
o
u
t
V_{out}
Vout进行归一化可得,且
τ
r
=
2
L
C
L
μ
n
C
O
X
W
V
D
D
,
α
P
=
V
∣
T
P
∣
V
D
D
τ_r=\frac{2LC_L}{μ_n C_{OX} WV_{DD}} ,α_P= \frac{V_{|TP}|}{V_{DD}}
τr=μnCOXWVDD2LCL,αP=VDDV∣TP∣
d
t
=
2
L
C
L
d
V
o
u
t
V
D
D
μ
n
C
O
X
W
V
D
D
2
(
V
D
D
V
D
D
−
∣
V
T
P
∣
V
D
D
)
2
=
2
L
C
L
d
u
μ
n
C
O
X
W
V
D
D
(
1
−
α
P
)
2
=
τ
r
d
u
(
1
−
α
P
)
2
dt=\frac{2LC_Ld\frac{V_out}{V_{DD}}}{μ_n C_{OX} WV_{DD}^2 (\frac{V_{DD}}{V_{DD}} -\frac{|V_{TP}|}{V_{DD}}) ^2 }= \frac{2LC_Ldu}{μ_n C_{OX} WV_{DD} (1-α_P )^2} =\frac{τ_r du}{(1-α_P )^2}
dt=μnCOXWVDD2(VDDVDD−VDD∣VTP∣)22LCLdVDDVout=μnCOXWVDD(1−αP)22LCLdu=(1−αP)2τrdu
两边求积分可得
∫
t
1
t
T
P
d
t
=
∫
u
1
u
T
P
τ
r
d
u
(
1
−
α
P
)
2
,
u
T
P
=
α
P
,
u
1
=
0.1
V
D
D
V
D
D
=
0.1
\int_{t_1}^{t_{TP}}dt=\int_{u_1}^{u_{TP}}\frac{τ_r du}{(1-α_P )^2},u_{TP}=α_P,u_1=\frac{0.1V_{DD}}{V_{DD}}=0.1
∫t1tTPdt=∫u1uTP(1−αP)2τrdu,uTP=αP,u1=VDD0.1VDD=0.1
可以得到第一段时间
t
r
1
=
t
T
P
−
t
1
=
τ
r
(
α
P
−
u
1
)
(
1
−
α
P
)
2
t_{r1}=t_{TP}-t_1=\frac{τ_r(α_P-u_1)}{(1-α_P )^2}
tr1=tTP−t1=(1−αP)2τr(αP−u1)
当
V
o
u
t
>
∣
V
T
P
∣
V_{out}>|V_{TP}|
Vout>∣VTP∣时,PMOS处于线性区。根据PMOS的输出特性,此时PMOS的输出电路
I
D
P
I_{DP}
IDP为
I
D
=
μ
n
C
O
X
W
L
[
(
∣
V
G
S
∣
−
∣
V
T
P
∣
)
(
V
D
D
−
V
o
u
t
)
−
(
V
D
D
−
V
o
u
t
)
2
2
]
=
C
L
V
o
u
t
d
t
I_D= \frac{μ_n C_{OX} W}{L} [(|V_{GS} |-|V_{TP}|)(V_{DD}-V_{out})- \frac{(V_{DD}-V_{out})^2}{2}]=C_L\frac{V_{out}}{dt}
ID=LμnCOXW[(∣VGS∣−∣VTP∣)(VDD−Vout)−2(VDD−Vout)2]=CLdtVout
通过移位和归一化可得,且
τ
r
=
2
L
C
L
μ
n
C
O
X
W
V
D
D
,
α
P
=
V
∣
T
P
∣
V
D
D
τ_r=\frac{2LC_L}{μ_n C_{OX} WV_{DD}} ,α_P= \frac{V_{|TP}|}{V_{DD}}
τr=μnCOXWVDD2LCL,αP=VDDV∣TP∣
d
t
=
τ
r
d
u
2
(
1
−
α
P
)
(
1
−
u
)
−
(
1
−
u
)
2
dt= \frac{τ_r du}{2(1-α_P )(1-u)- (1-u) ^2 }
dt=2(1−αP)(1−u)−(1−u)2τrdu
两边同时积分可得
∫
t
T
P
t
2
d
t
=
∫
u
T
P
u
2
τ
r
d
u
2
(
1
−
α
P
)
(
1
−
u
)
−
(
1
−
u
)
2
,
u
T
P
=
α
P
,
u
1
=
0.9
V
D
D
V
D
D
=
0.9
\int_{t_{TP}}^{t_2}dt=\int_{u_{TP}}^{u_{2}}\frac{τ_r du}{2(1-α_P )(1-u)- (1-u) ^2 },u_{TP}=α_P,u_1=\frac{0.9V_{DD}}{V_{DD}}=0.9
∫tTPt2dt=∫uTPu22(1−αP)(1−u)−(1−u)2τrdu,uTP=αP,u1=VDD0.9VDD=0.9
可得第二段时间
t
r
2
t_{r2}
tr2为
t
r
2
=
t
2
−
t
T
P
=
τ
r
2
(
1
−
α
P
)
2
l
n
(
1
−
2
α
P
+
u
2
1
−
u
2
)
t_{r2}=t_{2}-t_{TP}=\frac{τ_r}{2(1-α_P )^2}ln(\frac{1-2α_P+u_2}{1-u_2})
tr2=t2−tTP=2(1−αP)2τrln(1−u21−2αP+u2)
综上所述,上升时间为
t
r
=
t
r
1
(
u
1
=
0.1
)
+
t
r
2
(
u
2
=
0.9
)
=
τ
r
(
α
P
−
0.1
)
(
1
−
α
P
)
2
+
τ
r
2
(
1
−
α
P
)
2
l
n
(
1.9
−
2
α
P
0.1
)
t_r=t_{r1} (u_1=0.1)+t_{r2} (u_2=0.9)=\frac{τ_r(α_P-0.1)}{(1-α_P )^2}+\frac{τ_r}{2(1-α_P )^2}ln(\frac{1.9-2α_P}{0.1})
tr=tr1(u1=0.1)+tr2(u2=0.9)=(1−αP)2τr(αP−0.1)+2(1−αP)2τrln(0.11.9−2αP)
3. 下降时间 t f t_f tf
当输入信号为由0到1的阶跃信号时,下拉NMOS器件开始工作,PMOS断开,输出为低电平,
C
L
C_L
CL开始放电,此时开关模型可以等效为一阶RC网络,如图10。
由NMOS对
V
o
u
t
V_{out}
Vout节点处的电容放电可得流过NMOS的电流
I
D
N
I_{DN}
IDN 为
I
D
N
=
−
C
L
d
V
o
u
t
d
t
I_{DN}=-C_L \frac{dV_{out}}{dt}
IDN=−CLdtdVout
忽略沟道长度调制效应,NMOS器件的I-V输出特性为
I
D
=
μ
n
C
O
X
W
L
[
(
V
G
S
−
V
T
)
V
D
S
−
V
D
S
2
2
]
V
D
S
<
V
G
S
−
V
T
(
线性区
)
I_D= \frac{μ_n C_{OX} W}{L} [(V_{GS}-V_T )V_{DS}- \frac{V_{DS}^2}{2}] V_{DS}<V_{GS}-V_T (线性区)
ID=LμnCOXW[(VGS−VT)VDS−2VDS2]VDS<VGS−VT(线性区)
I
D
=
μ
n
C
O
X
2
W
L
(
V
G
S
−
V
T
)
2
V
D
S
≥
V
G
S
−
V
T
(
饱和区
)
I_D= \frac{μ_n C_{OX}}{2} \frac{W}{L}(V_{GS}-V_T )^2 V_{DS}≥V_{GS}-V_T (饱和区)
ID=2μnCOXLW(VGS−VT)2VDS≥VGS−VT(饱和区)
由于输入信号为由0到1的阶跃信号时,输出由1到0过渡,根据图10可以得到
V
o
u
t
=
V
D
S
,
V
G
S
=
V
i
n
V_{out}=V_{DS},V_{GS}=V_{in}
Vout=VDS,VGS=Vin,由于假设输入信号为理想的阶跃信号,可得
V
i
n
=
V
D
D
V_{in}=V_{DD}
Vin=VDD 。综上所述
V
G
S
=
V
i
n
=
V
D
D
V_{GS}=V_{in}=V_{DD}
VGS=Vin=VDD ,
V
o
u
t
=
V
D
S
V_{out}=V_{DS}
Vout=VDS。所以当
V
o
u
t
≥
V
D
D
−
V
T
N
V_{out}≥V_{DD}-V_{TN}
Vout≥VDD−VTN 时NMOS处于饱和区,如图11中的
t
1
t_1
t1~
t
T
N
t_{TN}
tTN段,当
V
o
u
t
<
V
D
D
−
V
T
N
V_{out}< V_{DD}-V_{TN}
Vout<VDD−VTN时NMOS处于线性区,如图11中的
t
T
N
t_{TN}
tTN~
t
2
t_2
t2段。
同上升时间一样分两段分析,可以得到下降时间
t
f
=
t
f
1
(
u
1
=
0.1
)
+
t
f
2
(
u
2
=
0.9
)
=
τ
f
(
α
N
−
0.1
)
(
1
−
α
N
)
2
+
τ
f
2
(
1
−
α
N
)
l
n
(
1.9
−
2
α
N
0.1
)
t_f=t_{f1} (u_1=0.1)+t_{f2} (u_2=0.9)= \frac{τ_f (α_N-0.1)}{(1-α_N )^2} +{τ_f}{2(1-α_N)} ln(\frac{1.9-2α_N}{0.1})
tf=tf1(u1=0.1)+tf2(u2=0.9)=(1−αN)2τf(αN−0.1)+τf2(1−αN)ln(0.11.9−2αN)
其中
τ
f
=
2
L
C
L
μ
n
C
O
X
W
V
D
D
τ_f=\frac{2LC_L }{μ_n C_{OX} WV_{DD}}
τf=μnCOXWVDD2LCL,
α
N
=
V
T
N
V
D
D
α_N= \frac{V_{TN}}{V_{DD}}
αN=VDDVTN
五、时延 t p t_p tp计算模型
1. 模型一
其中
t
p
H
L
=
C
L
∆
V
H
L
I
(
a
v
,
H
L
)
≈
τ
f
∗
1
(
1
−
α
N
)
2
t_{pHL}=\frac{C_L ∆V_{HL}}{I_{(av,HL)}} ≈τ_f*\frac{1}{(1-α_N )^2}
tpHL=I(av,HL)CL∆VHL≈τf∗(1−αN)21
t
p
L
H
=
C
L
∆
V
L
H
I
(
a
v
,
L
H
)
≈
τ
r
∗
、
f
r
a
c
1
(
1
−
α
P
)
2
t_{pLH}=\frac{C_L ∆V_{LH}}{I_{(av,LH)}} ≈τ_r*、frac{1}{(1-α_P )^2}
tpLH=I(av,LH)CL∆VLH≈τr∗、frac1(1−αP)2
用最大导通电流的一半作为平均电流:
I
(
a
v
,
H
L
)
≈
1
2
K
N
(
V
D
D
+
V
T
N
)
2
I_{(av,HL)}≈\frac{1}{2} K_N (V_{DD}+V_{TN} )^2
I(av,HL)≈21KN(VDD+VTN)2
I
(
a
v
,
L
H
)
≈
1
2
K
P
(
V
D
D
+
V
T
P
)
2
I_{(av,LH)}≈\frac{1}{2} K_P (V_{DD}+V_{TP} )^2
I(av,LH)≈21KP(VDD+VTP)2
可得时延计算模型一
t
p
=
t
p
H
L
+
t
p
L
H
2
=
1
2
τ
r
[
1
K
r
(
1
−
α
N
)
2
+
1
(
1
−
α
P
)
2
]
t_p=\frac{t_{pHL}+t_{pLH}}{2}=\frac{1}{2} τ_r [\frac{1}{K_r (1-α_N )^2 }+\frac{1}{(1-α_P )^2} ]
tp=2tpHL+tpLH=21τr[Kr(1−αN)21+(1−αP)21]
其中
K
r
=
τ
r
τ
f
K_r=\frac{τ_r}{τ_f}
Kr=τfτr
2. 模型二
在S域中
V
o
u
t
(
s
)
=
1
R
N
+
1
S
C
L
V
i
n
(
s
)
V_{out}(s)=\frac{1}{R_N+\frac{1}{SC_L }} V_{in} (s)
Vout(s)=RN+SCL11Vin(s)
进行反拉普拉斯变换可得
V
o
u
t
=
(
1
−
e
−
1
R
N
C
L
t
)
V
D
D
V_{out}=(1-e^{-\frac{1}{R_N C_L } t} ) V_{DD}
Vout=(1−e−RNCL1t)VDD
可以得到
t
p
H
L
=
l
n
(
2
)
R
N
C
L
=
0.69
R
N
C
L
t_{pHL}=ln(2) R_N C_L=0.69R_N C_L
tpHL=ln(2)RNCL=0.69RNCL
t
p
L
H
=
l
n
(
2
)
R
P
C
L
=
0.69
R
P
C
L
t_{pLH}=ln(2) R_P C_L=0.69R_P C_L
tpLH=ln(2)RPCL=0.69RPCL
可得反相器传输延迟为:
t
p
=
(
t
p
H
L
+
t
p
L
H
)
/
2
=
(
〖
0.69
C
〗
L
(
R
N
+
R
P
)
)
/
2
t_p=(t_pHL+t_pLH)/2= (〖0.69C〗_L (R_N+R_P))/2
tp=(tpHL+tpLH)/2=(〖0.69C〗L(RN+RP))/2
其中
R
N
R_N
RN,
R
P
R_P
RP为NMOS和PMOS在
V
D
S
V_{DS}
VDS从
V
D
D
V
D
D
2
V_{DD}~\frac{V_{DD}}{2}
VDD 2VDD之间的平均电阻
R
N
e
q
R_{Neq}
RNeq,
R
P
e
q
R_{Peq}
RPeq
以NMOS管的平均电阻R_Neq为例:
R
V
D
D
=
V
D
D
I
D
S
A
T
(
1
+
λ
V
D
D
)
R_{VDD}=\frac{V_{DD}}{I_{DSAT} (1+λV_{DD} ) }
RVDD=IDSAT(1+λVDD)VDD
R
0.5
V
D
D
=
0.5
V
D
D
I
D
S
A
T
(
1
+
0.5
λ
V
D
D
)
R_{0.5VDD}=\frac{0.5V_{DD}}{I_{DSAT} (1+0.5λV_{DD})}
R0.5VDD=IDSAT(1+0.5λVDD)0.5VDD
I
D
S
A
T
=
μ
n
C
O
X
W
L
[
(
V
D
D
−
V
T
)
V
D
S
A
T
−
V
D
S
A
T
2
2
]
,
V
D
S
A
T
=
V
G
S
−
V
T
I_{DSAT} = \frac{μ_n C_{OX} W}{L}[(V_{DD}-V_T ) V_{DSAT}- \frac{V_{DSAT}^2}{2}],V_{DSAT}=V_{GS}-V_T
IDSAT=LμnCOXW[(VDD−VT)VDSAT−2VDSAT2],VDSAT=VGS−VT
可得
R
N
e
q
=
R
V
D
D
+
R
0.5
V
D
D
2
=
1
2
V
D
D
I
D
S
A
T
(
1
1
+
λ
V
D
D
+
0.5
V
D
D
1
+
0.5
λ
V
D
D
)
R_{Neq}=\frac{R_{VDD}+R_{0.5VDD}}{2}=\frac{1}{2} \frac{V_{DD}}{I_{DSAT}}(\frac{1}{1+λV_{DD}}+\frac{0.5V_{DD}}{1+0.5λV_{DD} })
RNeq=2RVDD+R0.5VDD=21IDSATVDD(1+λVDD1+1+0.5λVDD0.5VDD)
根据泰勒展开为
1
1
+
x
=
1
−
x
+
x
2
+
⋯
\frac{1}{1+x}=1-x+x^2+⋯
1+x1=1−x+x2+⋯
进一步得到
R
N
e
q
=
1
2
V
D
D
I
D
S
A
T
[
1
−
λ
V
D
D
+
λ
2
V
D
D
2
+
⋯
+
1
2
(
1
−
1
2
λ
V
D
D
+
1
4
λ
2
V
D
D
2
+
⋯
)
]
R_{Neq}=\frac{1}{2} \frac{V_{DD}}{I_{DSAT}} [1-λV_{DD}+λ^2 V_{DD}^2+⋯+\frac{1}{2}(1-\frac{1}{2} λV_{DD}+\frac{1}{4} λ^2 V_{DD}^2+⋯)]
RNeq=21IDSATVDD[1−λVDD+λ2VDD2+⋯+21(1−21λVDD+41λ2VDD2+⋯)]
可得
R
e
q
≈
3
4
V
D
D
I
D
S
A
T
(
1
−
5
6
λ
V
D
D
)
R_{eq}≈\frac{3}{4} \frac{V_{DD}}{I_{DSAT} (1-\frac{5}{6} λV_{DD})}
Req≈43IDSAT(1−65λVDD)VDD
NOTE:需要注意的是有公式求 R e q R_{eq} Req的 5 6 \frac{5}{6} 65为 7 9 \frac{7}{9} 97这是因为求法不一样, 7 9 \frac{7}{9} 97是经过积分求得,只是误差不一致。
其中沟长调制系数λ可以通过HSPICE搭建与电路中MOS管一样的电压环境(
V
G
S
V_{GS}
VGS 和
V
D
S
V_{DS}
VDS)进行OP仿真,利用HSPICE输出的lis文件中的MOS管的gds值也就是
r
d
s
r_{ds}
rds的倒数粗略估计沟长调制系数λ的值。
r
d
s
=
∂
V
D
S
∂
I
D
S
=
∂
V
D
S
∂
(
0.5
μ
C
O
X
W
L
(
V
G
S
−
V
T
)
2
(
1
+
λ
V
D
s
)
)
)
≈
1
λ
I
d
=
≫
λ
=
g
d
s
I
d
r_{ds}=\frac{∂V_{DS}}{∂I_{DS}} =\frac{∂V_{DS}}{∂(0.5 μC_{OX} \frac{ W}{L} (V_{GS}-V_T )^2 (1+λV_{Ds})))}≈\frac{1}{λI_d } =≫ λ=\frac{gds}{I_d}
rds=∂IDS∂VDS=∂(0.5μCOXLW(VGS−VT)2(1+λVDs)))∂VDS≈λId1=≫λ=Idgds