LIOM: 论文重点总结

LIOM: Laser-Inertial Odoemtry and Mapping

A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments.

激光惯性里程计:实时、低漂移、鲁棒的位姿估计、大尺度高速环境中

主要由四个模块组成:

  1. 帧预处理模块:使用惯性测量来补偿每个激光帧的运动扰动
  2. 动态物体检测模块:通过应用CNN分割网络来检测和移除每帧的动态物体
  3. 激光—惯性里程计模块:使用误差状态卡尔曼滤波器来融合激光和IMU的数据以高频输出位姿估计
  4. 激光建图模块:采取帧—模型的策略创造一个静止的全局地图

高速环境的挑战:

速度快:速度一般达到70KM/h,点云每帧中的扰动会影响建图的准确率

缺乏几何特征:大多数高速环境缺少垂直方向的几何特征

高运动物体:高速上有很多运动的车辆

激光回环区域:高速上很少有回环场景,回环检测策略很难修正轨迹误差

主要贡献:

  1. 提供了一个实时的激光里程计和建图流程
  2. 使用CNN分割网络移除了动态物体在每帧激光测量中的影响
  3. 激光—惯性框架克服了剧烈运动并达到了高速环境的运动估计

处理动态物体与距离运动的相关工作:

处理剧烈运动估计:

问题:激光扫描仪扫描帧率低,外部运动剧烈时,一帧不能被当做刚体来处理。大多数激光slam假设一帧中的激光点共享一个坐标系,认为扫描过程中没有外部运动,这种假设不合理,会导致运动扰动。

解决办法:

1、使用IMU技术作为运动模型并匹配连续的激光帧来达到运动估计

  1. Le提出一种外参标定框架,通过IMU预积分技术测量并建模点云的运动扰动
  2. Ji展示了一种鲁棒的多传感器融合流程以估计自运动并建立一个一致的地图在多种挑战性环境中。该方法使用一个IMU用于运动预测和一个视觉-惯性耦合方法来解决剧烈运动问题

上述方法主要考虑静止环境,高速场景很难达到好的效果

处理动态目标:

问题:

大多数处理动态目标的方法基于视觉传感器,激光方法相对较少,动态环境会导致一些问题,位姿估计偏差大和回环检测失效

解决办法:

  1. Walcott考虑地图构建过程中的时间因素,并维护一个准确的地图在动态环境中,这种方法被设计为低动态环境,不适合高速场景;
  2. Fehr使用贝叶斯模型来获取点是动态的还是静态的,能在动态地图中构建一个一致的地图
  3. Rendong使用改进的RANSAC算法来跟踪运动物体并达到运动估计在动态环境中。但是该方法不能整合IMU测量数据,很难在高速场景中处理剧烈运动并达到准确的运动估计。
  4. Jiang提出一种激光-相机slam系统,使用基于稀疏子空间聚类的运动分割方法来构建动态环境中的静止地图。但不能实时运行,并且需要足够的光照
  5. Johannes 提出激光-相机slam方法,拒绝物体通过语义标号,缺点是只使用lidar提供给视觉特征深度测量,该方法在视觉退化的环境中不能达到鲁棒的位姿估计
  6. Jens提供了稠密的基于面元的方法用于运动估计和建图
  7. Young用激光-相机slam,基于直接法达到了好的实时表现
  8. Jean-Emmanuel提供了新的激光slam方法,使用特定的采样策略和新的帧图匹配方法,不过上述方法假设环境静止,很难在高速环境达到鲁棒的运动估计

  1. 扫描预处理模块(去畸变吧这是)

第一步:用时间戳标记激光点

第二步:找到激光点时间戳最近的两个imu测量数据

第三步:获取imu在K 、 K+1时刻的位姿

第四步:插值法获得激光点时间戳的位姿

第五步:我们要解决的是当前激光点相对开始点因非均匀运动导致的运动扰动,可以根据当前和起始激光点的位置速度信息得到当前时刻相对于开始时刻的运动扰动

第六步:变换起始点的所有激光点坐标并减去他们的点云运动失真∆Pcurr。

  1. 动态物体检测模块

一个全卷积神经网络(FCNN)被应用来准确检测和分割运动物体,例如车辆,行人进而自行车。四个连续步骤:1、通道特征提取 2、基于CNN的障碍物预测 3、障碍物聚类 4 后处理

通道特征提取:点云被投影到平面上,根据xy坐标,每个点被分到一个2D栅格,然后每个栅格的点集的八个统计量被计算传入FCNN。

基于CNN的障碍物预测:FCNN被用于预测栅格的障碍物性质,包括中心偏置、物体类别、置信度、物体高度和类别概率

物体聚类:障碍聚类:以上五个单元对象属性用于生成障碍物对象。然后,一个压缩

采用联合算法查找ob障碍聚类的候选对象。

后处理:障碍物聚类后,得到候选对象集群集。后处理进一步提炼潜在的候选聚类并输出最终结果,集群由预先设计的参数。

这四个步骤将会移除动态物体,并保持静态背景点云用于位姿估计和建图。

  1. 激光-惯性里程计模块

使用误差状态卡尔曼滤波器(ESKF)来实现激光扫描仪和IMU的传感器融合。优点:误差状态很小,可以忽略二阶乘积并减少计算量;方向的误差状态最小化表达,避免过参数化和万向锁问题。

  1. 运动预测:误差状态动力学和传播过程两部分组成

a)误差状态动力学:

b)传播过程:传播过程包含预测状态传播和误差协方差传播。直接使用欧拉积分来传播预测状态。误差协方差矩阵被推导从线性化误差状态运动学开始。

  1. 测量更新:四部分组成:观测模型,恢复模型,修正和重置名义状态

a)观测模型:

b)恢复测量:在运动预测过程中,我们获得了位姿先验,并使用他们作为多线程正太分布变换的初始猜想,然后位姿后验可以计算扫描匹配。最终测量和噪声被恢复通过对KF测量更新求逆:

  1. 修正:一旦预测被计算后,全误差状态后验和协方差可以被更新通过下式     
  2.                                          

d)重置名义状态:最终,名义状态被更新

在完成上述过程后,鲁棒的激光-惯性里程计以高频率被获得。

  1. 激光建图模块

为了进一步提高位姿估计的准确率,采用近似LOAM算法的建图策略。不同点是应用了多线程NDT算法以完成帧-模型扫描匹配而不是基于特征的方法。原因是NDT方法更鲁棒相对于特征方法来说。因此,他能够提供更准确的运动估计在几何退化的环境中,特别是高速公路场景。

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值