ARMA模型的检验与优化 #时间序列分析 R语言

  1. 掌握ARMA模型检验的内容和方法
  2. 理解模型优化的SBC准则和BIC准则的思想与原理,能综合运用上述准则选择相对最优拟合模型

训练数据在文末!!!

练习1、根据某公司过去三年每月缴纳的税收金额(行数据)(题目1数据.txt),求

(1)绘制序列时序图,判断序列的平稳性与纯随机性;

(2)绘制序列的样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,尝试选择多个(例如AR,MA)模型拟合该序列的发展,并分别求出各个拟合模型的口径;

(3)对上述选定的拟合模型进行模型的检验;

(4)综合运用SBC准则和BIC准则,选出相对最优模型。

data <- scan("F:/时间序列分析/实验7/习题数据/题目1数据.txt")
x <- ts(data,start=c(2019,1),frequency = 12)
#原序列时序图
plot(x)
#原序列白噪声检验
for(i in 1:2) print(Box.test(x,type = "Ljung-Box",lag = 6*i))
#原序列绘制自相关图和偏自相关图
par(mfrow = c(1,2))
acf(x)
pacf(x)
#模型参数估计,确定模型的口径
#①选择MA(1)模型时模型的口径
x.fit1 <- arima(x,order = c(0,0,1),method = "ML")
x.fit1
#②选择AR(2)模型时模型的口径
x.fit2 <- arima(x,order = c(2,0,0),method = "ML")
x.fit2
#模型检验
#MA(1)模型检验
ts.diag(x.fit1)
t = abs(x.fit1$coef)/sqrt(diag(x.fit1$var.coef))
pt(t,length(x)-length(x.fit1$coef),lower.tail = F)
#AR(3)模型检验
ts.diag(x.fit2)
t = abs(x.fit2$coef)/sqrt(diag(x.fit2$var.coef))
pt(t,length(x)-length(x.fit2$coef),lower.tail = F)
#模型优化,比较各模型的AIC值和BIC值
AIC(x.fit1)
AIC(x.fit2)
BIC(x.fit1)
BIC(x.fit2)
data.frame(AIC(x.fit1),AIC(x.fit2),BIC(x.fit1),BIC(x.fit2))

结果分析:

(1)时序图:从时序图可以看出,该序列在常数9附近波动,且波动有界。认为该序列是平稳序列。

白噪声检验:延迟6阶和延迟12阶的LB统计量的P值都小于α=0.05,则拒绝原假设,认为序列不是白噪声序列。

    Box-Ljung test

data:  x

X-squared = 25.658, df = 6, p-value = 0.0002578

    Box-Ljung test

data:  x

X-squared = 31.566, df = 12, p-value = 0.001614

(2)①从自相关图看出,除了1阶自相关系数在2倍标准差范围之外,之后几乎95%的自相关系数都突然衰减到2倍标准差范围之内。判定为1阶截尾;

②从偏自相关图看出,除了1-2阶偏自相关系数在2倍标准差范围之外,之后几乎95%的自相关系数都突然衰减到2倍标准差范围之内。判定为2阶截尾;

综上所述,序列呈现出自相关系数1阶截尾的特性,偏自相关系数2阶截尾的特性,初步确定拟合模型为MA(1)模型或MA(2)模型。

ACF图和PACF图:

 

确定模型口径:

MA(1)模型口径:x_{t}=9.2118+\varepsilon _{t}+\varepsilon _{t-1}Var(\varepsilon _{t})=0.7205

Call:

arima(x = x, order = c(0, 0, 1), method = "ML")

Coefficients:

         ma1  intercept

      1.0000     9.2118

s.e.  0.0798     0.2792

sigma^2 estimated as 0.7205:  log likelihood = -46.99,  aic = 99.97

AR(2)模型口径:x_{t}-9.1154=\frac{\varepsilon _{t}}{1-1.0276B+0.5412B^{2}}Var(\varepsilon _{t})=0.7977

该AR(2)模型的等价表达为:

x_{t}=4.681669+1.0276x_{t-1}-0.5412x_{t-2}+\varepsilon _{t}, Var(\varepsilon _{t})=0.7977

Call:

arima(x = x, order = c(2, 0, 0), method = "ML")

Coefficients:

         ar1      ar2  intercept

      1.0276  -0.5412     9.1154

s.e.  0.1524   0.1738     0.2945

sigma^2 estimated as 0.7977:  log likelihood = -47.65,  aic = 103.31

(3)MA(1)模型检验:

模型显著性检验:因为4-24阶延迟下LB统计量的P值都显著大于0.05,接受原假设,可以认为该拟合模型的残差序列属于白噪声序列,即该拟合模型显著有效。残差Q-Q图显示,数据点基本围绕在基准线附近,不能拒绝残差项是正态的假设。

模型参数显著性检验:t统计量的P值小于α=0.05,拒绝原假设,故认为两个参数均显著非零。

         ma1              intercept

1.363877e-14    1.045188e-27

AR(2)模型检验:

模型显著性检验:因为4-24阶延迟下LB统计量的P值都显著大于0.05,接受原假设,可以认为该拟合模型的残差序列属于白噪声序列,即该拟合模型显著有效。残差Q-Q图显示,数据点基本围绕在基准线附近,不能拒绝残差项是正态的假设。

模型参数显著性检验:t统计量的P值小于α=0.05,拒绝原假设,故认为两个参数均显著非零。

         ar1                     ar2                  intercept

5.523818e-08     1.901274e-03     2.922119e-26

(4)模型优化:

用AIC准则和BIC准则评判,MA(1)和AR(2)两个拟合模型的相对优势,最小信息量检验显示,无论是使用AIC准则还是使用BIC准则,MA(1)模型都要优于AR(2)模型,在本题中MA(1)模型是相对最优模型。

       AIC.x.fit1.      AIC.x.fit2.     BIC.x.fit1.        BIC.x.fit2.

1     99.9722        103.3087      104.7228         109.6428

练习2、根据某城市过去45年中每年的人口死亡率(行数据)(题目2数据.txt),求:

(1)绘制序列时序图,判断序列的平稳性与纯随机性;

(2)绘制序列的样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,尝试选择多个(例如AR,MA,ARMA)模型拟合该序列的发展;

(3)对上述选定的拟合模型进行模型的检验;

(4)综合运用SBC准则和BIC准则,选出相对最优模型。

data <- scan("F:/时间序列分析/实验7/习题数据/题目2数据.txt")
x <- ts(data,start=1977)
#原序列时序图
plot(x)
#原序列白噪声检验
for(i in 1:2) print(Box.test(x,type = "Ljung-Box",lag = 6*i))
#原序列绘制自相关图和偏自相关图
par(mfrow = c(1,2))
acf(x)
pacf(x)
#模型参数估计,确定模型的口径
#①选择MA(1)模型时模型的口径
x.fit1 <- arima(x,order = c(0,0,1),method = "ML")
x.fit1
#③选择AR(2)模型时模型的口径
x.fit2 <- arima(x,order = c(2,0,0),method = "ML")
x.fit2
#③选择ARMA(2,1),1模型时模型的口径
x.fit3 <- arima(x,order = c(2,0,1),method = "ML")
x.fit3
#模型检验
#MA(1)模型检验
ts.diag(x.fit1)
t = abs(x.fit1$coef)/sqrt(diag(x.fit1$var.coef))
pt(t,length(x)-length(x.fit1$coef),lower.tail = F)
#AR(2)模型检验
ts.diag(x.fit2)
t = abs(x.fit2$coef)/sqrt(diag(x.fit2$var.coef))
pt(t,length(x)-length(x.fit2$coef),lower.tail = F)
#ARMA(2,1)模型检验
ts.diag(x.fit3)
t = abs(x.fit3$coef)/sqrt(diag(x.fit3$var.coef))
pt(t,length(x)-length(x.fit3$coef),lower.tail = F)

#模型优化,比较各模型的AIC值和BIC值
AIC(x.fit1)
AIC(x.fit2)
AIC(x.fit3)
BIC(x.fit1)
BIC(x.fit2)
BIC(x.fit3)
data.frame(AIC(x.fit1),AIC(x.fit2),AIC(x.fit3),BIC(x.fit1),BIC(x.fit2),BIC(x.fit3))

结果分析:

(1)时序图:从时序图可以看出,该序列在常数5附近波动,且波动有界。认为该序列是平稳序列。

白噪声检验:延迟6阶的LB统计量的P值大于α=0.05,但延迟12阶的LB统计量的P值小于α=0.05,则拒绝原假设,认为序列不是白噪声序列。

    Box-Ljung test

data:  x

X-squared = 10.609, df = 6, p-value = 0.1013

    Box-Ljung test

data:  x

X-squared = 23.893, df = 12, p-value = 0.02104

(2)①从自相关图看出,自相关系数呈现不规则地衰减到零值附近。判定为拖尾;

        ②从偏自相关图看出,偏自相关系数呈现出对数函数单调收敛到零值附近。判定为拖尾特性;

综上所述,序列呈现出自相关系数拖尾的特性,偏自相关系数拖尾的特性,初步确定拟合模型为ARMA(2,1)模型。

ACF图和PACF图:

确定模型口径:

MA(1)模型口径:x_{t}=4.9444+\varepsilon _{t}+0.4495\varepsilon _{t-1}Var(\varepsilon _{t})=0.8857

Call:

arima(x = x, order = c(0, 0, 1), method = "ML")

Coefficients:

         ma1  intercept

      0.4495     4.9444

s.e.  0.1203     0.2020

sigma^2 estimated as 0.8857:  log likelihood = -61.23,  aic = 128.47

AR(2)模型口径:x_{t}-4.9569=\frac{\varepsilon _{t}}{1-0.4661B+0.3259B^{2}}Var(\varepsilon _{t})=0.8383

该AR(2)模型的等价表达为:

x_{t}=4.261943+0.4661x_{t-1}-0.3259x_{t-2}+\varepsilon _{t}Var(\varepsilon _{t})=0.8383

Call:

arima(x = x, order = c(2, 0, 0), method = "ML")

Coefficients:

         ar1      ar2  intercept

      0.4661  -0.3259     4.9569

s.e.  0.1412   0.1394     0.1597

sigma^2 estimated as 0.8383:  log likelihood = -60.06,  aic = 128.12

ARMA(2,1)模型时模型的口径为:

x_{t}-4.9586=\frac{1-0.1221B}{1+0.5741B-0.3651B^{2}}\varepsilon _{t}Var( \varepsilon _{t})=0.8363

该ARMA(2,1)模型的等价表达为:

x_{t}=3.922253+0.5741x_{t-1}-0.3651x_{t-2}+\varepsilon _{t}-0.1221\varepsilon _{t-1}Var( \varepsilon _{t})=0.8363

Call:

arima(x = x, order = c(2, 0, 1), method = "ML")

Coefficients:

         ar1      ar2      ma1  intercept

      0.5741  -0.3651  -0.1221     4.9586

s.e.  0.3617   0.1740   0.3847     0.1527

sigma^2 estimated as 0.8363:  log likelihood = -60.01,  aic = 130.02

 

(3)MA(1)模型检验:

模型显著性检验:因为4-24阶延迟下LB统计量的P值都显著大于0.05,接受原假设,可以认为该拟合模型的残差序列属于白噪声序列,即该拟合模型显著有效。残差Q-Q图显示,数据点基本围绕在基准线附近,不能拒绝残差项是正态的假设。

模型参数显著性检验:t统计量的P值小于α=0.05,拒绝原假设,故认为两个参数均显著非零。

         ma1                 intercept

2.740853e-04      3.548356e-27

AR(2)模型检验:

模型显著性检验:因为4-24阶延迟下LB统计量的P值都显著大于0.05,接受原假设,可以认为该拟合模型的残差序列属于白噪声序列,即该拟合模型显著有效。残差Q-Q图显示,数据点基本围绕在基准线附近,不能拒绝残差项是正态的假设。

模型参数显著性检验:t统计量的P值小于α=0.05,拒绝原假设,故认为三个参数均显著非零。

         ar1                       ar2                  intercept

9.847737e-04      1.212639e-02      6.817368e-31

ARMA(2,1)模型检验:

模型显著性检验:因为4-24阶延迟下LB统计量的P值都显著大于0.05,接受原假设,可以认为该拟合模型的残差序列属于白噪声序列,即该拟合模型显著有效。残差Q-Q图显示,数据点基本围绕在基准线附近,不能拒绝残差项是正态的假设。

模型参数显著性检验:只有AR(2)和常数项的t统计量的P值小于α=0.05,拒绝原假设,故认为只有AR(2) 和常数项的参数显著非零。

         ar1                        ar2                     ma1                 intercept

6.006193e-02      2.103146e-02      3.762491e-01      3.541855e-31

(4)模型优化:

用AIC准则和BIC准则评判,MA(1)、AR(2)和ARMA(2,1)三个拟合模型的相对优势,最小信息量检验显示,使用AIC准则时AR(2)模型相对较优,使用BIC准则,MA(1)模型相对较优。

AIC.x.fit1

AIC.x.fit2

AIC.x.fit3

BIC.x.fit1

BIC.x.fit2

BIC.x.fit3

1

128.4692

128.1235

130.0208

133.8892

135.3502

139.0541

需要该练习的训练数据请自行跳转下载:

博文:‘ARMA模型的检验与优化’训练数据资源-CSDN文库

  • 27
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值