*学习率是超参数,训练结果没达到要求时大家可以自行调整大小,我这里调成了0.2
一、梯度下降
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x * w
def cost(xs, ys):
cost = 0
for x, y in zip(xs, ys):
y_pred = forward(x)
cost += (y_pred - y) ** 2
return cost / len(xs)
def gradient(xs, ys):
grad = 0
for x, y in zip(xs, ys):
grad += 2 * x * (x * w - y)
return grad / len(xs)
epoch_list = []
cost_list = []
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradient(x_data, y_data)
w -= 0.2 * grad_val
print('Epoch:', epoch, 'w=', w, 'loss=', cost_val)
epoch_list.append(epoch)
cost_list.append(cost_val)
print('Predict (after training)', 4, forward(4))
plt.plot(epoch_list, cost_list)
plt.grid(True)
plt.xlabel('Epoch')
plt.ylabel('Cost')
plt.show()
二、随机梯度下降
#SGD随机梯度下降,其实应该随机取一个样本来更新权重,但这里直接遍历了每个样本
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
def gradient(x, y):
return 2 * x * (x * w - y)
epoch_list = []
loss_list = []
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
for x, y in zip(x_data, y_data):
grad = gradient(x, y)
w -= 0.2 * grad
print("\tgrad: ", x, y, grad)
l = loss(x, y)
print("progress:", epoch, "w=", w, "loss=", l)
epoch_list.append(epoch)
loss_list.append(l)
print('Predict (after training)', 4, forward(4))
plt.plot(epoch_list, loss_list)
plt.grid(True)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()