一、环境配置
首先yolov8工程要能在本地跑通,此处不做介绍,网络上很详细。
二、训练教师和学生模型
本文data以coco128数据为例,也可以配置为自定义数据集;在数据集上训练一个效果比较好的教师模型,然后用教师模型去蒸馏学生模型。
model_t:载入教师模型的预训练权重
本文以yolov8l为教师模型,以yolov8n为学生模型,进行训练。
三、蒸馏训练
将已经训练好的教师模型model_t的知识迁移到学生模型model_s上,从而提升学生模型的性能。
import torch
import pdb
from ultralytics import YOLO
import os
os.environ[