YOLOv8的特征蒸馏代码应用讲解(CWD/MGD/mimic/在线蒸馏/逻辑蒸馏)

本文介绍了如何在YOLOv8中进行特征蒸馏,包括环境配置、训练教师和学生模型、蒸馏训练的步骤。重点解析了蒸馏参数设置、不同类型的特征蒸馏损失(MimicLoss、MGDLoss、CWDLoss)以及logit损失,并提供了获取蒸馏特征图的方法。同时,文章讨论了在线蒸馏和离线蒸馏的区别,以及教师模型在蒸馏过程中的角色切换。完整代码链接见文末。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、环境配置
首先yolov8工程要能在本地跑通,此处不做介绍,网络上很详细。
二、训练教师和学生模型
本文data以coco128数据为例,也可以配置为自定义数据集;在数据集上训练一个效果比较好的教师模型,然后用教师模型去蒸馏学生模型。
model_t:载入教师模型的预训练权重
本文以yolov8l为教师模型,以yolov8n为学生模型,进行训练。
三、蒸馏训练
将已经训练好的教师模型model_t的知识迁移到学生模型model_s上,从而提升学生模型的性能。

import torch
import pdb
from ultralytics import YOLO

import os  

os.environ[
### YOLOv8 模型蒸馏方法 #### 教师模型的选择与训练 教师模型通常是使用大量数据集训练得到的高性能 YOLOv8 模型。为了确保教师模型具有足够的泛化能力和准确性,在大规模标注良好的数据集上对其进行充分训练是非常重要的[^1]。 ```python import yolov8 # 假设这是用于加载YOLOv8库的一个模块名 teacher_model = yolov8.load('yolov8_large') # 加载预训练的大规模YOLOv8作为教师模型 train_dataset = load_dataset('large_coco_2017_train') teacher_model.train(train_dataset, epochs=100) ``` #### 学生模型的设计与初始化 学生模型则是在较小的数据集上进行训练的小型版本YOLOv8网络结构。设计时应考虑计算资源限制以及实际应用场景需求来调整其复杂度和参数量大小,以便于部署到边缘设备或其他低功耗平台之上。 ```python student_model = yolov8.create('small_yolov8', num_classes=len(classes)) initial_weights_path = 'pretrained_small_yolo.pth' if os.path.exists(initial_weights_path): student_model.load_state_dict(torch.load(initial_weights_path)) else: initialize(student_model) # 初始化权重函数定义省略 ``` #### 蒸馏过程中的损失函数配置 引入专门针对知识迁移优化过的混合损失项,不仅包含常规的目标检测任务所需的分类交叉熵、边界框回归误差等成分;还额外加入了来自教师预测分布的信息指导学生的学习方向,使得后者能够更好地模仿前者的行为模式并继承其优秀特性[^2]。 ```python from torch.nn import functional as F def distillation_loss(teacher_outputs, student_outputs, targets, alpha=0.5, temperature=4): teacher_scores = F.softmax(teacher_outputs / temperature, dim=-1).detach() student_log_probs = F.log_softmax(student_outputs / temperature, dim=-1) kl_divergence = F.kl_div(student_log_probs, teacher_scores, reduction='batchmean') detection_loss_fn = get_detection_loss() # 获取目标检测标准损失函数 detection_loss = detection_loss_fn(student_outputs, targets) total_loss = (alpha * temperature ** 2) * kl_divergence + (1 - alpha) * detection_loss return total_loss ``` #### 实施联合训练流程 将准备好的师生两套架构一同送入迭代更新循环之中执行同步优化操作,期间需注意监控验证指标变化趋势以适时调节超参设定直至获得满意效果为止. ```python for epoch in range(num_epochs): for images, labels in dataloader: optimizer.zero_grad() with torch.no_grad(): teacher_preds = teacher_model(images) student_preds = student_model(images) loss_value = distillation_loss( teacher_preds, student_preds, labels, alpha=config['distill_alpha'], temperature=config['temperature'] ) loss_value.backward() optimizer.step() # 打印日志或保存checkpoint逻辑此处省略... ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ghx3110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值