YOLOv8的特征蒸馏代码应用讲解(CWD/MGD/mimic/在线蒸馏/逻辑蒸馏)

本文介绍了如何在YOLOv8中进行特征蒸馏,包括环境配置、训练教师和学生模型、蒸馏训练的步骤。重点解析了蒸馏参数设置、不同类型的特征蒸馏损失(MimicLoss、MGDLoss、CWDLoss)以及logit损失,并提供了获取蒸馏特征图的方法。同时,文章讨论了在线蒸馏和离线蒸馏的区别,以及教师模型在蒸馏过程中的角色切换。完整代码链接见文末。
摘要由CSDN通过智能技术生成

一、环境配置
首先yolov8工程要能在本地跑通,此处不做介绍,网络上很详细。
二、训练教师和学生模型
本文data以coco128数据为例,也可以配置为自定义数据集;在数据集上训练一个效果比较好的教师模型,然后用教师模型去蒸馏学生模型。
model_t:载入教师模型的预训练权重
本文以yolov8l为教师模型,以yolov8n为学生模型,进行训练。
三、蒸馏训练
将已经训练好的教师模型model_t的知识迁移到学生模型model_s上,从而提升学生模型的性能。

import torch
import pdb
from ultralytics import YOLO

import os  

os.environ[
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ghx3110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值