【机器人运动学】——刚体运动的描述

【机器人运动学】——刚体转动的拆解

一、转动

  1. 物体转动的注意事项

(1)多次转动需要确定先后顺序,转动顺序不能互换。

(2)旋转的转轴需要确定清楚。

  1. 物体转动R的两种拆解方式

(1)对方向固定不动的转轴:FIxed angles (XYZ)→ 左乘基
在这里插入图片描述

  • 注意1:由旋转矩阵R也可以推算出旋转角度。
  • 注意2:式子乘个P,就更直观了。先操作x,之后结果再操作y,结果再操作z。

(2)对转动的frame当下的转轴:Euler angles (ZYX)→ 右乘联体
在这里插入图片描述

  • 注意1:这里可以这么想,把一个向量先mapping(转换)到第一个frame,再到第二个,再到第三个。那么相当于,整体是从最后一个mapping回来的,只有这样才能保证两种拆解方式得到的结果一致。
  • 注意2:这也就说明Fixed angle的正转和Euler angle的反转可以得到一样的解。

(3)对转动的frame当下的转轴,也可以利用ZYZ的方式进行拆解。

二、刚体运动状态的表达

  1. 齐次变换矩阵T:将姿态和位置统一起来。

B A T = [ − B A R − A P B o r g 0 0 0 1 ] {}_B^AT= \begin{bmatrix} -& {}_B^AR&-& {}^AP_{Borg} \\ 0 & 0 & 0 & 1 \end{bmatrix} BAT=[0BAR00APBorg1]

  1. 对于齐次变换矩阵T而言,其也可以用于描述frame间的变换mapping情况(相对空间状态),也可以用于向量/点的移动转动操作operate。
  • 注意1:这里的齐次变换,应该是先转动再移动
  • 注意2:很容易想,点和向量的移动和转动,相当于基frame的反动和反转。
  1. 齐次变换矩阵的运算

(1)连续运算:ABC系联乘

(2)反矩阵:由 B A T A B T = I 4 × 4 {}^A_BT{}^B_AT=I_{4\times4} BATABT=I4×4可得,
在这里插入图片描述

(3)B对A的转轴旋转:premultiply,左乘

(4)B对B的转轴旋转:postmultiply,右乘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值