多模态数据融合简介#翻译

文章介绍了多模态数据融合在深度学习中的应用,涵盖了早期融合(数据级融合)、晚期融合(决策级融合)和中间融合(神经网络基础的融合)三种主要技术。作者讨论了这些方法的优势、挑战以及在医学、商业等领域中的实际应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

翻译自—— 感谢外国友人分享,鄙人在此翻译分享给大家INTRODUCTION TO DATA FUSION. multi-modality | by Haylat T | Haileleol Tibebu | Medium

多模态梳理_多模态图像和多模态方法的区别-CSDN博客 #这个网u也写得不错!

多模态

神经网络是最著名的机器学习算法之一,由于其高精度训练的能力,近年来一直发挥着重要作用。神经网络是一种受人脑启发的深度学习方法。深度学习已成为学术界和工业界的一个突出研究兴趣,主要是因为与其他机器学习架构相比,深度学习具有很高的性能。

单个域数据集中进行深度学习已经成功。目前的研究涉及多模态输入数据。Lahal等[3]将多模态定义为由多个传感器观测的系统使用多模态的目的是从单个传感器中提取和混合重要信息,并使用这种混合功能来解决给定问题。因此,预期产出将比个别模式具有更丰富的代表性和性能。多模态数据分析是医学、商业、无人驾驶技术和游戏等多个研究领域的实用解决方案。常见的遥感设备,如相机、激光雷达、雷达和超声波经常被融合[4]。

多模态技术

有三种技术用于多模态数据融合[5] [6]。

1. 早期融合或数据级融合

数据级融合是在进行分析之前融合多个数据的传统方法(图 3)。此方法称为输入电平融合。研究[6]提出了两种早期融合技术的可能方法。第一种方法是通过消除两个传感器之间的相关性来组合数据。第二种方法是在较低维的公共空间处融合数据。有许多统计解决方案可用于完成一种或两种方法,包括主成分分析(PCA)、典型相关分析和独立成分分析。

早期融合适用于从传感器获得的原始数据或预处理数据。在融合之前,应从数据中提取数据特征,否则该过程将具有挑战性&#

### 多模态医学影像融合技术概述 多模态医学图像融合旨在通过结合来自不同成像模式的数据来提供更丰富的诊断信息。这种技术能够综合多种成像方式的优点,从而提高疾病检测和治疗规划的效果[^1]。 #### 基于拉普拉斯金字塔的方法及其局限性 一种常用的多尺度融合方法是利用拉普拉斯金字塔来进行图像融合。这种方法通过对原始图像进行多层次分解,在每一层上执行特定操作后再重构得到最终结果。然而,当增加更多的层次时,可能会遇到诸如边缘退化、细节损失以及过度平滑等问题,这些问题会降低用于医疗决策支持系统的图像质量[^2]。 ```python import numpy as np from skimage.transform import pyramid_laplacian def apply_laplacian_pyramid(image, max_levels=4): """Apply Laplacian Pyramid decomposition.""" pyr = tuple(pyramid_laplacian(image, max_layer=max_levels)) return pyr[-1] # Example usage with an input image array 'img' laplacian_result = apply_laplacian_pyramid(img) ``` #### 卷积神经网络与局部梯度能量策略相结合的技术改进方案 为了克服传统基于金字塔模型存在的缺陷,有研究提出了采用卷积神经网络(CNNs)辅助下的新型融合框架。该框架不仅继承了原有方法的优势——即保持良好的视觉效果;还引入了深度学习机制以增强特征提取能力,并运用局部梯度能量作为指导原则优化边界区域的表现力。这使得经过处理后的合成图像是更加适合临床使用的高质量版本。 ```python import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D def create_cnn_fusion_model(input_shape=(None, None, 3)): inputs = Input(shape=input_shape) conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) upsampled = UpSampling2D(size=(2, 2))(pool1) output = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(upsampled) model = Model(inputs=[inputs], outputs=[output]) return model fusion_model = create_cnn_fusion_model() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值