翻译自—— 感谢外国友人分享,鄙人在此翻译分享给大家INTRODUCTION TO DATA FUSION. multi-modality | by Haylat T | Haileleol Tibebu | Medium
多模态梳理_多模态图像和多模态方法的区别-CSDN博客 #这个网u也写得不错!
多模态
神经网络是最著名的机器学习算法之一,由于其高精度训练的能力,近年来一直发挥着重要作用。神经网络是一种受人脑启发的深度学习方法。深度学习已成为学术界和工业界的一个突出研究兴趣,主要是因为与其他机器学习架构相比,深度学习具有很高的性能。
在单个域数据集中进行深度学习已经成功。目前的研究涉及多模态输入数据。Lahal等[3]将多模态定义为由多个传感器观测的系统。使用多模态的目的是从单个传感器中提取和混合重要信息,并使用这种混合功能来解决给定问题。因此,预期产出将比个别模式具有更丰富的代表性和性能。多模态数据分析是医学、商业、无人驾驶技术和游戏等多个研究领域的实用解决方案。常见的遥感设备,如相机、激光雷达、雷达和超声波经常被融合[4]。
多模态技术
有三种技术用于多模态数据融合[5] [6]。
1. 早期融合或数据级融合
数据级融合是在进行分析之前融合多个数据的传统方法(图 3)。此方法称为输入电平融合。研究[6]提出了两种早期融合技术的可能方法。第一种方法是通过消除两个传感器之间的相关性来组合数据。第二种方法是在较低维的公共空间处融合数据。有许多统计解决方案可用于完成一种或两种方法,包括主成分分析(PCA)、典型相关分析和独立成分分析。
早期融合适用于从传感器获得的原始数据或预处理数据。在融合之前,应从数据中提取数据特征,否则该过程将具有挑战性&#