域外游踪(十)

域外游踪(十)
谒青冢
又着秋色上寒枝,
鸿雁南飞声声悲。
唯有青冢最知春,
黄河东逝无歇时。
常思昭君故明妃,
关山万里赴戎机。
不辱使命汉家女,
常住毡帐无归期。
远眺
俯视远山浮寒尘,
峰兀林密幽谷深。
长河如练绕城过,
高楼大厦卧闲云。
落日余辉依山尽,
惯看秋月顿空濛。
独有大召佛光起,
青灯黄卷唱晚钟。
重阳节游乌素图国家森林公园:
山色浮空听溪涛,
石阶重叠步步高。
群峰绝处眠白云,
红叶尽头染林梢。
重阳登高心境好,
丢掉竹仗步徒劳。
滿目秋色收眼底,
俯视人流如涌潮。
读《西游记》有感
西天取经路遥远,
三教九流鬼神仙。
可笑庸僧井中蛙,
黑白颠倒天地玄。
阴阳两极孕坤乾,
地造六合龙虎蛇。
人娇不分唐三藏,
火眼金星也难辩。
观十月大阅兵
十月大阅兵,壮我国威!军威!回眸祖国百年沉浮,不胜感慨:故吟诗颂之:
铁甲雄师铸军魂,
重器列阵环宇惊。
中华儿女多壮志,
擎天利剑慑苍穹。
众志诚城筑长城,
十亿人民十亿兵,
积贫积弱东去也,
圆我强军强国梦。
祝贺二毛、张伟结婚纪念:
千年修得前世缘,
同舟共济结理连。
双双镜气犹未尽,
山重水复又一山。
莫负岁月空赋闲,
自古暗香出幽兰。
祝愿双双比翼鸟,
福祸相依永相伴。
凭吊乌不浪抗战遗址
一九四O年日黑田厚德师团以数万计日军强攻马鸿宾八十一军一个师据守的乌不浪山口。我抗日守军用血肉之躯筑起了一道血肉长城。激战一天一夜,敌寸步难进。最后我守军以千计将士的生命代价,彻底粉碎了曰冠的西进计划!
百年封尘弹炮坑,
八千将士捐英灵。
一寸山河一寸血,
慷慨赴难两昆仑。
浴血倭顽重重兵,
家国情怀死与生。
忠骨何须桑梓地,
泪雨纷纷祭忠魂。
祝大哥八十寿辰:
四世同堂荣耋寿,
鸾笙合奏祝千秋。
福如东海年八轶,
寿比南山松常幽。
勤俭持家谋化筹,
八十依然赛老牛。
尊为长兄作表率,
一路艰难同弟酬。
九九重阳节
今逢重阳九月九,
登高朓望滿目秋。
愰若少壮开怀笑,
忘却人在黄昏后。
重阳复始夜与昼,
星汉浩渺大宇宙。
年年岁岁又重阳,
谁道人比黄花瘦?
自信
一觅众山登绝顶,
会当击水铸人生。
千锤百炼会有时,
落笔千钧山河动。
临海感怀思曹公,
老骥伏枥听涛声。
有志不在年事高,
咏罢建安秋风韵。
乌粱素海望秋:
蒹葭几度秋色浓,
残雨淅浙寒霜凝。
望断濛濛无睛日,
烟波阔远落飞鸿。
苇叶泛黄萧萧尽,
长叹暖韵己飘零。
无须感怀多伤感,
荒野枯草 裹新蕊。
寄居

绿荫紫萝掩白楼,
亭台池塘入画轴。
闲庭信步怡乐情,
院内春色院外秋。
站看兰天云卷舒,
晴空万里竟自由。
石价花圃树影动,
谁家小儿叫啾啾。

一路曲折通远幽,
绿荫摇枝风扯袖。
心静养身悟禅意,
鸿雁声声催中秋。
心寄山林叹岁悠,
吟诗能解万古愁。
人生秋尽枉凝眉,
涛声依旧鹳雀楼。
新居
喜临新居,门纳千祥。随想颇多,故感慨之:
福临新宅屋生辉,
紫气东来罩仁里。
临窗俯视万家乐,
绿拥园林总相宜。
乌沙闲眠思良妻,
双双行影采东篱。
安平养老自寻乐,
清茶淡饭有所依。

为了创建这样一个推荐系统,我们可以利用一些基本的算法和技术,包括数据挖掘、机器学习和地理位置服务。这里提供一个简单的Python伪代码示例,使用了协同过滤(Collaborative Filtering)、基于时间和天气条件的规则引擎以及地理编码API: ```python import requests from datetime import datetime from sklearn.metrics.pairwise import cosine_similarity # 假设我们有一个用户历史游踪和偏好数据库(例如字典) user_preferences = { "Alice": {"location": "上海", "history": ["科技馆", "外滩"], "weather_preferences": [20, 30]}, "Bob": {"location": "北京", "history": ["故宫", "798艺术区"], "weather_preferences": [25, 35]}, # ... } # 假设有天气API返回的城市实时天气(示例,实际通过API获取) def get_weather(location): response = requests.get(f"https://api.weather.com/weather/{location}") return response.json()["weather"] # 获取当前时间和用户的天气偏好范围 current_time = datetime.now().time() user_weather = user_preferences["user"].get("weather_preferences") # 根据时间和天气筛选目的地 def filter_destinations(locations, time, weather): filtered_locs = [] for loc in locations: if is_time_appropriate(time) and is_weather_appropriate(weather, get_weather(loc)): filtered_locs.append(loc) return filtered_locs # 使用余弦相似度计算用户偏好和历史目的地的相关性 def recommend(user, locations): similarity_scores = cosine_similarity([user["history"]], [locations]) most_similar_loc = locations[similarity_scores[0].argmax()] return most_similar_loc # 示例函数应用 def suggest_playground(user, current_location): nearby_locations = find_nearby_locations(current_location) filtered_locs = filter_destinations(nearby_locations, current_time, user_weather) return recommend(user, filtered_locs) # 假设有个查找附近地点的函数 def find_nearby_locations(current_location): # 使用地理编码API查询附近的地点 pass # 使用示例 user = "Alice" current_location = "上海" suggested_dest = suggest_playground(user, current_location) print(f"建议{user}在{current_location}附近的{suggested_dest}游玩。")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值