论文--论文具体motivation

以论文名字为前缀,需要的可以自行搜寻pdf文件,后面是论文的motivation,旨在减少阅读的时间,感兴趣的可继续阅读

1、CNN-based Cross-dataset No-reference Image Quality Assessment来说提出了一种基于CNN的跨数据集无参考图像质量评估方法,通过Siamese架构和训练程序,在跨数据集评估中取得了明显更好的性能。本文提出了一种用于跨数据集深度无参考图像质量评估(NR-IQA)的孪生架构和训练程序。该架构在跨数据集评估中表现出比以往方法更好的性能。通过使用大型审美数据集进行预训练,并添加低级质量线索,进一步提高了性能。该文提出了一种用于通用(跨数据集)无参考图像质量评估的孪生架构。VGGNet和ILGNet作为Siamese结构内核网络。在标准欧几里得损失函数中添加了一种成对排名损失。通过预训练大型审美数据集和添加低级质量线索进一步改进了架构。

2、In-the-wild No-Reference Image Quality Assessment using Deep Convolutional Neural Networks本文提出了一种使用深度卷积神经网络进行野外无参考图像质量评估的方法,通过学习质量度量而无需分类失真类型,实现了对图像质量的一致性预测,该方法在KonIQ-10k数据库上的实验结果表明,与现有方法相比,具有更简单的结构且性能相当。
过去方案: 传统的NR-IQA方法通常将图像的失真类型分离处理,但实际上,图像受多种失真类型的组合影响,因此很难确定特定的失真类型作为质量降低的主要原因。最近,出现了两个新的数据库(LIVE In-the-Wild图像质量挑战数据库和KonIQ-10k数据库),它们包含了伴随每个图像的真实失真图像以及人类意见分数,而不对失真类型进行分类。然而,传统的NR-IQA算法在这些野外数据库上的性能明显下降。
论文的Motivation: 随着深度神经网络的发展,越来越多的基于神经网络的方法被应用于NR-IQA问题。然而,开发一个合适的深度神经网络解决方案仍面临许多挑战,如对图像大小的敏感性、标记图像数量有限的数据库以及数据增强技术在NR-IQA问题中的不适用性。为了克服这些挑战,本文提出了一种完全端到端训练的深度卷积神经网络方法,该方法可以处理任意大小的图像,并且可以使用现有的有限大小的数据集进行训练。与现有方法相比,该方法具有更简单的结构,并且能够预测人类意见分数的完整分布。在KonIQ-10k数据库上的实验结果表明,该方法的性能(相关性度量)与现有方法相当。

3、LEARNING DEEP VECTOR REGRESSION MODEL FOR NO-REFERENCE IMAGE QUALITY ASSESSMENT本文提出了一种学习深度向量回归模型的方法,用于无参考图像质量评估。通过预测五个置信度分数而不是单一质量分数,该方法能够更准确地估计人类感知的图像质量。通过基于显著性的池化策略,将预测的置信度转换为客观质量分数。实验证明,该方法在两个基准数据集上取得了最先进的性能,并具有很强的泛化能力。
过去方案: 过去的无参考图像质量评估方法通常基于回归框架,将图像特征直接映射到质量分数。然而,心理学证据表明,人类更喜欢使用定性描述来评估视觉质量,例如使用五级有序刻度:“优秀”,“良好”,“一般”,“差”和“糟糕”。
论文的Motivation: 基于上述观察,本文提出了一种向量回归模型,预测五个置信度分数而不是单一质量分数。这些置信度分数旨在指示测试图像被分配到这五个质量等级的置信度。此外,为了更广泛的应用,本文提出了一种基于显著性的池化策略,将预测的置信度转换为客观质量分数。通过在两个基准数据集上进行的大量实验证明,本文的方法取得了最先进的性能,并展现出很强的泛化能力。
该方法在整个LIVE数据集上优于基准FR-IQA和NR-IQA方法。
在各个失真类型上,基线方法(DVRM A)和基于显著性的方法(DVRM S)在WN、BLUR和FF方面的性能优于其他NR-IQA方法。
在整个TID2008数据集上,该方法与其他方法相比表现更好,使用的评估指标包括PSNR、SSIM、VIF、BLIINDS-II、DIIVINE、SRNSS、BRISQUE和CORNIA。
在跨数据集评估中,该方法在LIVE上训练并在TID2008上测试。在JP2K、JPEG、BLUR和WN等常见失真方面,该方法优于其他两个竞争方法CORNIA和BRISQUE。此外,该方法在其他失真方面也取得了令人信服的结果。
图3展示了在LIVE上训练并在TID2008上测试时获得的SROCC指标。该方法在训练数据集中未包含的失真上表现良好。
5-6chuantong 例如dcp
psnr
4、No-reference Image Quality Assessment with Deep Convolutional Neural Networks本文提出了一种基于深度卷积神经网络的无参考图像质量评估框架,通过直接将原始图像作为输入并输出图像质量分数,将特征学习和回归融合为一个优化过程,从而提供了一个端到端的解决方案,避免了设计手工特征的困扰。该方法在LIVE数据集上取得了出色的性能,并与其他最先进的无参考图像质量评估算法相竞争。
过去方案: 目前,最先进的通用无参考图像或视频质量评估算法通常依赖于捕捉自然场景统计(NSS)属性的精心设计的手工特征。然而,设计这些特征通常并不容易。
论文的Motivation: 鉴于设计手工特征的困难,本文提出了一种基于深度卷积神经网络的无参考图像质量评估框架,通过直接将原始图像作为输入并输出图像质量分数,将特征学习和回归融合为一个优化过程,从而提供了一个端到端的解决方案,避免了设计手工特征的困扰。
本文提出了使用深度卷积神经网络(CNN)进行NR-IQA,并讨论了先前基于CNN的方法的局限性。本文旨在解决这些局限性,并提出了一种新的用于NR-IQA的深度CNN模型。提出的NR-IQA框架基于深度CNN模型。方法包括三个主要步骤。第一步是在大规模ImageNet数据集上进行监督预训练,以获得良好的初始权重。第二步是修改原始的深度CNN模型,使其适用于NR-IQA。这是通过保留预训练层并添加五个新层来实现的,这些新层直接输出图像质量分数。第三步是使用少量标记数据对新网络进行微调,以用于NR-IQA目的。网络架构包括31个层,包括MLP卷积层、全局平均池化(GAP)层和Dropout等特征。激活函数使用的是修正线性单元(ReLU),最后一层是提供图像质量分数的sigmoid函数。本文还介绍了网络中网络(NIN)的概念,以增强局部模型的抽象能力。
使用NIN(网络中网络)架构,包括多个MLP卷积层,后跟GAP和sigmoid层。
使用三个步骤的过程进行训练:在ImageNet数据集上进行预训练,网络修改,以及使用目标数据集进行微调。
原始彩色图像被调整为448x448,并且网络在从大型彩色图像中提取的224x224的补丁上进行微调。
每个补丁根据其源图像的标准化主观评分(MOS)被分配一个标准化的质量分数。
训练集包括随机选择的60%参考图像及其失真版本,每个训练过程中大约有600个训练图像。
在测试阶段,网络在整个448x448图像上运行一次,并对输出进行平均以获得最终的质量分数。

使用torch7框架实现的深度CNN算法在LIVE IQA数据库上进行评估。
使用线性相关系数(LCC)和Spearman等级相关系数(SROCC)来衡量性能。
提出的DeepCNN算法在性能上与最先进的CNN算法相当,并且优于基于手工特征的NR-IQA方法。
算法的性能随着训练时期的增加而提高。
深度CNN的输出仅与主观评分(MOS)相关,对失真类型不敏感,表明算法具有通用性。

5、Exploiting Neural Models for No-reference Image Quality Assessment本文提出了一种改进的无参考图像质量评估算法,利用卷积神经网络(CNN)和基于神经理论的显著性检测。通过CNN网络对输入图像的非重叠补丁进行质量评分,然后利用基于自由能的神经模型检测显著性图,并将其作为加权掩码应用于整个图像的质量评分。实验结果表明,与现有的图像质量评估方法相比,我们的算法达到了最先进的性能。
显著性检测,而显著性检测可以提高图像质量评估的性能。
论文的Motivation: 本文的动机是将显著性检测引入无参考图像质量评估中,以提高评估结果与人类视觉感知的一致性。通过设计一个针对彩色图像的新的CNN结构,并结合基于自由能的神经理论进行显著性检测,我们计算每个图像补丁的权重,并通过加权平均得到整个图像的预测质量评分。
该方法利用卷积神经网络(CNN)来估计每个图像块的质量得分。损失函数定义为预测得分与实际得分之间的均方误差。网络参数使用动量进行更新。学习率在卷积层经过一定时期后逐渐减小,以提高训练效率。在测试阶段,CNN网络在小块上运行,并使用加权平均值组合预测的质量得分。图像的显著性通过检查显著性图来考虑,显著区域的块对整体质量得分的贡献更大
. 详细的实验设置:
实验在LIVE数据库和TID 2008数据库上进行,分别包含不同类型的失真图像。使用Spearman Rank Order Correlation Coefficient(SROCC)和Linear Correlation Coefficient(LCC)评估了所提出方法的性能。
b. 详细的实验结果:
结果显示,所提出的方法在JPEG和快速褪色(FF)失真方面表现出竞争性能,并且在TID 2008数据库上也表现出与其他方法可比的性能。

6、Blind Image Quality Assessment Using a General Regression Neural Network本研究开发了一种使用通用回归神经网络(GRNN)的无参考图像质量评估(QA)算法,成功地评估了一系列失真类型的图像质量,相对于人类主观评价,实验结果表明该方法与人类主观判断密切一致。本文讨论了自动评估感知图像质量的重要性,特别是由于数字图像的广泛使用。它提到,虽然在相对于参考图像的质量评估方面已经取得了进展,但需要无参考(NR)算法,可以在没有参考图像的情况下评估图像质量。本文还强调了现有NR算法的局限性,这些算法特定于某些类型的失真,并提出使用通用回归神经网络(GRNN)进行盲图像质量评估。相位一致性是一个关注图像傅里叶相位的概念,因为已经证明感知信息存储在相位而不是振幅中。相位一致性函数是根据信号的傅里叶级数展开来定义的,可以通过搜索局部能量函数中的峰值来计算。相位一致性已应用于各种图像处理问题,但尚未用于创建图像质量指数。然而,它被认为是盲图像质量评估(IQA)的相关特征,不需要参考图像。计算相位一致性的MATLAB代码可以在提供的链接中找到。
图像熵是对图像样本熵的度量,根据亮度值的经验概率计算得出。它已被用于识别图像的各向异性,并显示出对盲IQA的潜力。将使用MATLAB函数entropy()计算图像的熵。
图像梯度测量图像中亮度变化的幅度。可以通过将图像与Sobel算子掩模进行卷积来估计梯度。梯度幅度计算为方向导数估计的平方和的平方根。提供了图1(a)-©中图像梯度幅度的平均值作为示例。
通用回归神经网络(GRNN)是一种强大的回归工具,用于图像质量评估。它具有动态网络结构,并基于统计原理。GRNN IQA架构包括四个层:输入层、模式层、求和层和输出层。GRNN使用四个感知激励特征作为输入:失真图像的相位一致性图像的平均值、失真图像的相位一致性图像的熵、失真图像的熵和失真图像的梯度幅度的平均值。GRNN根据这些输入预测图像质量分数。

  • 17
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值