Linux系统下部署DeepSeek-R1-UD-IQ1_S


配置

两块A100(80GB*2) Linux系统


部署步骤:

1.下载模型文件

从 modelscope 下载模型的 .gguf 文件:

https://www.modelscope.cn/models/unsloth/DeepSeek-R1-GGUF/files

2.安装ollama linux版

下载地址:

https://ollama.com/

1.直接安装,安装命令:

curl -fsSL https://ollama.com/install.sh | sh

2.压缩文件安装
将压缩文件解压到ollama文件夹(自建):

tar -xvf ollama-linux-amd64.tgz -C ollama

3. 创建 Modelfile 文件,该文件用于指导 ollama 建立模型

1.用vim编辑器,为模型建立模型描述文件。
可根据自身硬件情况调整 num_gpu(GPU 加载层数)和 num_ctx(上下文窗口大小):

FROM /homeDeepSeek-R1-UD-IQ1_S.gguf  
PARAMETER num_gpu 61  
PARAMETER num_ctx 2048  
PARAMETER temperature 0.6  
TEMPLATE "<|User|>{{ .Prompt }}<|Assistant|>"

2添加环境变量 PATH :

export PATH=$PATH:/home/deepseek/ollama/bin
export OLLAMA_MODELS=/home/ollama_models

4. 创建 ollama 模型

1.本地系统上启动 Ollama 服务: ollama serve &
2.在第 3 步建立的模型描述文件所处目录下,执行以下命令:

ollama create DeepSeek-R1-UD-IQ1_S.gguf -f DeepSeekQ1_Modelfile

5. 运行模型

ollama run DeepSeek-R1-UD-IQ1_S.gguf --verbose

6.如下命令查看 ollama 日志

journalctl -u ollama --no-pager

相关问题

1.num_gpu设置为最大61,在进行长文本问答时会崩。
2.num_gpu设置为32时,一块gpu跑满会崩,另一块不跑。

### 关于 DeepSeek-R1-UD-IQ1_S 12GB 技术规格和相关信息 #### 文件和技术细节 DeepSeek-R1-UD-IQ1_S 是一种特定配置下的模型文件,其大小约为 12 GB。此版本属于 DeepSeek R1 系列的一部分,该系列专注于提供高效能的语言处理能力[^1]。 对于希望部署这一模型的应用场景而言,可以利用 `llama.cpp` 工具来管理和操作这些大型模型文件。例如,通过指定路径并执行相应命令可实现多个分片权重文件的合并工作: ```bash ./llama.cpp/llama-gguf-split --merge \ DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \ merged_file.gguf ``` 上述脚本展示了如何将分割后的权重重新组合成单个完整的 `.gguf` 文件格式[^2]。 #### 获取与安装指南 为了便于开发者快速上手使用此类预训练好的量化模型,在线平台 Hugging Face 提供了一个便捷的方式来进行下载。具体来说,可以通过 Python 库 `huggingface_hub` 中提供的函数轻松完成目标模型文件的获取过程。下面给出了一段用于下载名为 "DeepSeek-R1-Distill-Qwen-7B" 的蒸馏版大模型实例代码片段;而对于其他变体如 DeepSeek-R1-UD-IQ1_S,则只需调整参数即可适用相同逻辑: ```python from huggingface_hub import snapshot_download snapshot_download( repo_id="deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", allow_patterns=["*.gguf"] ) ``` 这段程序会自动从仓库中拉取匹配模式的所有资源到本地环境当中去[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值