AI知识库怎么选(ima、Dify、扣子、AnythingLLM)

引言


问题:AI知识库是什么以及可以解决什么问题?

讲个小故事,

我是一个出生在图书馆的小男孩,从我出生起我就开始读武侠小说,至今我已经读了1000本武侠小说。现在,我正在写一本自己的武侠小说,但卡在了武功体系的设计上。我苦思冥想,毫无头绪,于是决定从我读过的书里找灵感——挑出300本写得好的,提取它们的武功体系,再融合创新,打造一个独一无二的体系。

可问题是,这300本我一天看10本,也要30天,太耗时间了!有没有更好的方法? 这时候我的程序员好基友看到我不开心,询问我后决定给我开发一个程序,解我之忧。他只花了1小时,帮我写了个程序,把这300本书上传到数据库,并连接了Deepseek的API。这样一来,Deepseek就能直接“读”这300本书了。

当我向Deepseek提问:“请参考这300本书,总结每本书的武功体系,帮我创立一个独特的武功体系。”神奇的事情发生了!Deepseek思考后,给出了一个全新的武功体系。我顿时眉开眼笑,我的好基友也跟着幸福地笑了。

这个故事要表达的是

图书馆可以看作我们这个世界被书面化的知识

而我读过的1000本书,是我目前掌握的知识。

从中挑出的300本,就是我认为最有价值的部分。

好基友帮我写的程序,就是我们今天要聊的“知识库+AI”。

让AI回答问题时,不是参考网上良莠不齐的知识,而是基于我精心筛选的、有价值的知识。简单来说,就是让AI更懂我,更贴合我的需求。

这样带来的改变是什么

我只需要把所有关注的知识整理好,就像给大脑建一个目录,不需要记住每个知识点的全部内容。好处是,当我有了新点子或想法时,不用再翻来翻去查A、B、C、D、E、F……一大堆文档去验证可行性。我只需要问AI:“在我的知识库里,基于我的经验,找出和我的想法相关的知识点,再人工推算一下它的可行性。

现在回答

AI知识库是什么:个人大脑中的硬盘和CPU

AI知识库能解决什么问题:降低**AI幻觉,让AI更个性化**

正文


目前比较流行的知识库+AI的产品有哪些

省流推荐

  • 腾讯 IMA 适合大多数人的需求,推荐在线个人使用,强烈推荐,我认为这个产品最好的地方是足够简单,简单到几乎没有帮助文档,会使用Excle就会使用IMA,只需要上传文档到知识库,就可以直接让AI根据知识库的内容回答,四步就可以搞定【下载安装->登录->上传文件->提问】;

  • Anaything 推荐离线个人使用,可以使用Anaything, Dify更好,但是部署起来有点麻烦

  • Dify 推荐开发者和企业用户使用,适合需要快速开发和多语言支持的开发者。

  • Coze 推荐开发者使用,要是想开发应用或者做一些复杂的AI工具可以尝试使用,单纯使用知识库不推荐。

  • FastGPT 推荐企业用户使用,适合需要深度定制和复杂知识管理的企业用户。

ima


腾讯出品

亮点功能:

  1. 可以直接在ima中浏览网页、进行问答、记笔记时都能随时收藏;

  2. 可以通过分享链接、二维码,将共享知识库分享给他人;

  3. 在微信中快捷导入文件,可以直接将公众号文章转存到ima中;

这是目前支持的平台

下载安装后主界面是这样的,简洁,看起来很舒服

主界面左侧边栏灯泡图标点开后就是知识库

我新建了3个知识库,给其中一个知识库上传了两个文档。

进行简单的问答,不需要写复杂的提示词,给出的回答很精准。

另一个我认为比较重要的功能是,笔记功能

为什么说这个功能重要,目前流行的知识库工具要么只能上传文件问答,要么只能记笔记;

而ima可以说打通了这两者;

点击左侧边栏灯泡下面的图标,

创建的笔记是Markdown格式,支持Markdown格式,平时记笔记,够用。

如果笔记功能把类似Notion、语雀的块编辑功能抄过来就更牛了

第三个功能是AI搜索,可以直接提问或者贴链接问答都可以

内嵌的模型是DeepseekR1和混元,支持联网

ima是目前为数不多的具备 AI搜索、AI知识库、AI笔记的产品,而且每一个功能体验下来都比目前市面上的同类型产品更流畅

Anaything LLM


亮点功能

  • 支持离线部署

  • 可以拿到源码修改

开源的离线AI知识库产品,是属于比较早的AI知识库产品

可以直接在官网下载桌面版安装,也可以到他们的github仓库找到Docker部署方法

官网地址:AnythingLLM | The all-in-one AI application for everyoneAnythingLLM is the AI application you've been seeking. Use any LLM to chat with your documents, enhance your productivity, and run the latest state-of-the-art LLMs completely privately with no technical setup.https://anythingllm.com/

github仓库:https://github.com/Mintplex-Labs/anything-llm

初始化结束后进入这个页面,会有默认的一个知识库

这里我新建了一个知识库用来测试,

点击知识库旁边的上传按钮上传文档到知识库,Anything LLM给知识库加载文件的逻辑是先把文件上传存储到软件的数据库中,再由用户决定要将哪些文档加载到现在要使用的知识库。

这个设计避免了多个知识库要共用一个文档是需要上传多次的情况,企业内部使用知识库时这一点非常重要

给知识库上传完文档后要设置下使用的大模型,点击知识库旁边的设置按钮->选择聊天设置->工作区LLM提供者

我这里用ollama本地部署的deepseek-r1:7b模型

如果没有启动,就会出现下面的这个报错

启动ollama后在知识库提问,看起来回答了,但和我上传的文档里面的内容不一样(红色框内是原文档内容),其实它已经找到我上传的文档了,可能是大模型参数太小导致的

单从本次对话看,Anything LLM表现不是那么好,但是这个产品最初主要面向的用户是开发者,需要对知识库做一系列设置(文本分割、LLM温度、向量数据库设置)后才能有很好的效果

Dify


亮点功能:

    • 工作流方式,为AI的使用提供了很多可能性

    • 可以在线使用也可以离线部署,支持在线调用大模型和本地ollama接口,组合方式非常自由

    • 易于使用的界面和 API,

官方地址:Dify.AI · 生成式 AI 应用创新引擎新一代大型语言模型应用开发框架,轻松构建和运营生成式 AI 原生应用。https://dify.ai/zh

Github仓库:https://github.com/langgenius/dify

我这里使用的Docker本地部署,需要本地先安装好Docker和Docker Compose以及Git

具体步骤:

git clone https://github.com/langgenius/dify.git
cd dify
cd docker
cp .env.example .env
docker compose up -d

上面的命令逐个敲一遍,等待每个命令执行完成,访问 http://localhost/install就可以看到dify的初始化页面,

这里需要注意Docker的镜像库大概率需要 特殊网络 才能访问到

执行docker compose up -d命令时可能会遇到下面这个报错,可以选择换镜像源试试

Error response from daemon: Get “https://registry-1.docker.io/v2/

安装完成后需要 注册->登录

管理员的邮箱、用户名、密码,这里的账户信息随便填,只要能记住就可以

然后使用刚注册的账号登录

进来后界面基本是空的,

点击“创建空白应用”,可以选择创建五种类型的应用

  • 聊天助手:会创建一个类似chatgpt的聊天对话应用

  • Agent:比起聊天助手多了 工具的引入和自迭代功能,工具里面可以添加代码解释器、插件、工作流等,自迭代就是提一次问题,模型会把自己的回答再反思下重新回答,迭代结束后给出一个最终的答案。迭代的次数可以设置

  • 文本生成应用:作用就是封装提示词,处理文本相关的工作,比如:提取关键字、拼接文本、生成内容大纲....等等

  • chatflow:在chatflow中可以和自己编排的工作流进行多轮对话,有记忆功能,

  • 工作流:节点的集合,通过合理的插入节点实现特定的任务,一个工作流也可以当成一个节点使用

下图是我创建的一个简单的工作流,这个工作流中有四个节点,整个工作流的作用是将文件中的标题提取出来

节点:可以是一个代码执行器、也可以是一个Agent、也可以是一个工作流,是一系统功能的总称,是dify这个平台的核心

dify的玩法有很多,既可以做基础的AI知识库使用,同时可以开发复杂的AI应用,这里先不展示更多的例子。

Coze


亮点介绍:

  • 功能多

  • 国产

  • 支持工作流构建应用

官网地址:扣子扣子是新一代 AI 大模型智能体开发平台。整合了插件、长短期记忆、工作流、卡片等丰富能力,扣子能帮你低门槛、快速搭建个性化或具备商业价值的智能体,并发布到豆包、飞书等各个平台。https://www.coze.cn/

字节的产品,目前只支持web端

进来后首页是这样的

左上角加号点击后弹窗中两个个选项,创建智能体创建应用,这两者的区别是什么:

  • 智能体:利用大语言模型使用知识、插件等功能解决模型幻觉、专业领域知识不足等问题。这个智能体在使用时页面是固定的,还是一个chat页面只不过你的每个提问都会经过多个节点的处理再给出回答

  • 应用:支持个性化的用户界面,在创建这个应用的过程中用户可以自定义UI界面,选择数据库,设计工作流。这个功能可以让用户不写任何代码就能开发出AI应用;

这篇文章只演示知识库的功能,

先是上传文档到知识库,目前上传文档解析很慢,可以后台解析,先做其他事

文档上传好之后,新建智能体

在工作流那一栏 点击+号 -> 然后点击创建工作流,

这个工作流本来我想提取文档中的标题,结果输入提示词“提取文档中标题”后输出为空,识别不到任何内容,将提示词更换为“提取文档中的文本”后才能输出一些文本,输出的东西和我想要的效果差很多,

试运行没问题后就可以发布,发布后就可以添加到智能体工作流那一栏中了

智能体发布的时候可以选择要发布的平台,这个也是Coze的亮点之一,可以发布到多个平台

然后就可以在应用商店找到自己发布的智能体开始对话

Coze的知识库检索功能体验下来,不太好,操作并不简单,体验并不舒服,检索并不精准,字节的好些AI产品感觉都是半成品


结语

现在市面上的AI工具越来越多,

比起单一选择时反而增加了用户的选择成本,

宣传时都是“颠覆时代”“震惊全球”“当今最强”,

玩不尽的文字游戏,

一遍遍消耗着用户的耐心,

而用户想要什么?

简单,好用。

很多人做产品的初衷都是如此,

但有多少产品真的做到了

### 实现 DeepSeek 创建个人知识库 为了在本地环境中成功创建并运行基于 DeepSeek 的个人知识库,需遵循一系列配置与操作流程。 #### 安装依赖环境 首先,确保 Python 版本兼容性至关重要。推荐使用 Conda 虚拟环境来管理项目所需的软件包版本。具体命令如下所示: ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` 这一步骤能够建立一个名为 `deepseek` 的新虚拟环境,并指定 Python 3.10 作为解释器版本[^2]。 #### 配置 DeepSeek Dify 平台集成 完成上述准备工作之后,下一步就是将 DeepSeek 整合至支持私有化部署的 Dify 开发平台之中。这种做法不仅有助于保护敏感资料的安全性隐私权,同时也允许开发者利用更加强大且灵活的功能集去定制专属的人工智能应用程序[^1]。 #### 添加本地知识库的具体方法 对于希望进一步扩展应用能力的企业或个人而言,在已有的基础上加入自定义的知识源是一项非常有价值的工作。通常情况下,此过程涉及以下几个方面: - **准备结构化的数据文件**:可以是以 CSV 或 JSON 格式的文档集合; - **编写适配接口程序**:用于解析外部输入的数据格式并与内部存储机制相匹配; - **执行索引更新动作**:每当新增加一批条目时都需要重新计算其对应的检索向量; 请注意,实际编码细节会依据所技术栈的不同而有所差异。然而,总体思路保持一致——即始终围绕着提高系统的智能化水平以及增强用户体验展开设计思考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值