P7周:咖啡豆识别

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
import os,PIL,random,pathlib

data_dir = pathlib.Path('./49-data')
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("/")[1] for path in data_paths]
classNames
['Dark', 'Green', 'Light', 'Medium']
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

test_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

total_data = datasets.ImageFolder("./49-data", transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1200
    Root location: ./49-data
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx
{'Dark': 0, 'Green': 1, 'Light': 2, 'Medium': 3}
## 3.划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True)

test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True)

<torch.utils.data.dataset.Subset object at 0x7f465037fa30> <torch.utils.data.dataset.Subset object at 0x7f465037fee0>
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64
## 二、手动搭建VGG-16模型

## 1.搭建模型
import torch.nn.functional as F


class vgg16(nn.Module):
    def __init__(self):
        super(vgg16, self).__init__()
        # 卷积块1
        self.block1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块2
        self.block2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块3
        self.block3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块4
        self.block4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块5
        self.block5 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )

        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=512 * 7 * 7, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=4)
        )

    def forward(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = vgg16().to(device)
print(model)
Using cuda device
vgg16(
  (block1): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block2): Sequential(
    (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block3): Sequential(
    (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): ReLU()
    (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block4): Sequential(
    (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): ReLU()
    (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block5): Sequential(
    (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): ReLU()
    (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU()
    (2): Linear(in_features=4096, out_features=4096, bias=True)
    (3): ReLU()
    (4): Linear(in_features=4096, out_features=4, bias=True)
  )
)
## 2.查看模型详情

# 统计模型参数以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]           1,792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]          36,928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]          73,856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]         147,584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]         295,168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]         590,080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]         590,080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]       1,180,160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]       2,359,808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]       2,359,808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]       2,359,808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]       2,359,808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]       2,359,808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]     102,764,544
             ReLU-33                 [-1, 4096]               0
           Linear-34                 [-1, 4096]      16,781,312
             ReLU-35                 [-1, 4096]               0
           Linear-36                    [-1, 4]          16,388
================================================================
Total params: 134,276,932
Trainable params: 134,276,932
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.52
Params size (MB): 512.23
Estimated Total Size (MB): 731.32
----------------------------------------------------------------
## 三、训练模型
# 1.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset) # 训练集大小
    num_batches = len(dataloader)  # 批次数目

    train_loss, train_acc = 0, 0   # 初始化训练损失

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)
        loss = loss_fn(pred, y)

        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss
## 2.编写测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_bathes = len(dataloader)

    test_loss, test_acc = 0, 0

    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_bathes

    return test_acc, test_loss

## 3.正式训练
import copy

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数

epochs = 40

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0  # 设置一个最佳准确率, 作为最佳模型的判断指标

for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    # 保存最佳模型到best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))

# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')
Epoch: 1, Train_acc:24.9%, Train_loss:1.388, Test_acc:22.5%, Test_loss:1.387, Lr:1.00E-04
Epoch: 2, Train_acc:41.7%, Train_loss:1.245, Test_acc:45.8%, Test_loss:1.035, Lr:1.00E-04
Epoch: 3, Train_acc:62.0%, Train_loss:0.795, Test_acc:79.6%, Test_loss:0.709, Lr:1.00E-04
Epoch: 4, Train_acc:75.0%, Train_loss:0.655, Test_acc:79.2%, Test_loss:0.480, Lr:1.00E-04
Epoch: 5, Train_acc:82.1%, Train_loss:0.464, Test_acc:83.3%, Test_loss:0.471, Lr:1.00E-04
Epoch: 6, Train_acc:83.9%, Train_loss:0.406, Test_acc:89.6%, Test_loss:0.295, Lr:1.00E-04
Epoch: 7, Train_acc:87.1%, Train_loss:0.321, Test_acc:91.2%, Test_loss:0.267, Lr:1.00E-04
Epoch: 8, Train_acc:85.0%, Train_loss:0.395, Test_acc:90.0%, Test_loss:0.412, Lr:1.00E-04
Epoch: 9, Train_acc:89.4%, Train_loss:0.322, Test_acc:85.8%, Test_loss:0.416, Lr:1.00E-04
Epoch:10, Train_acc:92.0%, Train_loss:0.227, Test_acc:88.8%, Test_loss:0.319, Lr:1.00E-04
Epoch:11, Train_acc:94.3%, Train_loss:0.168, Test_acc:93.3%, Test_loss:0.162, Lr:1.00E-04
Epoch:12, Train_acc:94.3%, Train_loss:0.133, Test_acc:95.0%, Test_loss:0.110, Lr:1.00E-04
Epoch:13, Train_acc:95.3%, Train_loss:0.123, Test_acc:92.1%, Test_loss:0.235, Lr:1.00E-04
Epoch:14, Train_acc:94.0%, Train_loss:0.149, Test_acc:96.7%, Test_loss:0.079, Lr:1.00E-04
Epoch:15, Train_acc:96.6%, Train_loss:0.071, Test_acc:98.8%, Test_loss:0.051, Lr:1.00E-04
Epoch:16, Train_acc:97.5%, Train_loss:0.064, Test_acc:96.2%, Test_loss:0.140, Lr:1.00E-04
Epoch:17, Train_acc:97.5%, Train_loss:0.073, Test_acc:98.3%, Test_loss:0.067, Lr:1.00E-04
Epoch:18, Train_acc:96.8%, Train_loss:0.102, Test_acc:96.7%, Test_loss:0.098, Lr:1.00E-04
Epoch:19, Train_acc:98.0%, Train_loss:0.065, Test_acc:96.7%, Test_loss:0.070, Lr:1.00E-04
Epoch:20, Train_acc:97.5%, Train_loss:0.065, Test_acc:97.1%, Test_loss:0.058, Lr:1.00E-04
Epoch:21, Train_acc:97.7%, Train_loss:0.051, Test_acc:96.7%, Test_loss:0.071, Lr:1.00E-04
Epoch:22, Train_acc:98.5%, Train_loss:0.045, Test_acc:97.9%, Test_loss:0.067, Lr:1.00E-04
Epoch:23, Train_acc:98.5%, Train_loss:0.043, Test_acc:95.8%, Test_loss:0.094, Lr:1.00E-04
Epoch:24, Train_acc:99.5%, Train_loss:0.020, Test_acc:98.3%, Test_loss:0.053, Lr:1.00E-04
Epoch:25, Train_acc:99.6%, Train_loss:0.016, Test_acc:97.5%, Test_loss:0.081, Lr:1.00E-04
Epoch:26, Train_acc:97.1%, Train_loss:0.104, Test_acc:96.2%, Test_loss:0.084, Lr:1.00E-04
Epoch:27, Train_acc:98.4%, Train_loss:0.045, Test_acc:98.3%, Test_loss:0.049, Lr:1.00E-04
Epoch:28, Train_acc:97.1%, Train_loss:0.113, Test_acc:97.5%, Test_loss:0.103, Lr:1.00E-04
Epoch:29, Train_acc:98.8%, Train_loss:0.049, Test_acc:98.8%, Test_loss:0.053, Lr:1.00E-04
Epoch:30, Train_acc:99.0%, Train_loss:0.035, Test_acc:97.5%, Test_loss:0.093, Lr:1.00E-04
Epoch:31, Train_acc:98.3%, Train_loss:0.047, Test_acc:95.0%, Test_loss:0.138, Lr:1.00E-04
Epoch:32, Train_acc:97.6%, Train_loss:0.064, Test_acc:96.7%, Test_loss:0.076, Lr:1.00E-04
Epoch:33, Train_acc:98.5%, Train_loss:0.062, Test_acc:98.8%, Test_loss:0.054, Lr:1.00E-04
Epoch:34, Train_acc:99.5%, Train_loss:0.025, Test_acc:98.3%, Test_loss:0.035, Lr:1.00E-04
Epoch:35, Train_acc:99.0%, Train_loss:0.028, Test_acc:92.5%, Test_loss:0.153, Lr:1.00E-04
Epoch:36, Train_acc:98.3%, Train_loss:0.051, Test_acc:96.2%, Test_loss:0.142, Lr:1.00E-04
Epoch:37, Train_acc:98.6%, Train_loss:0.058, Test_acc:98.3%, Test_loss:0.047, Lr:1.00E-04
Epoch:38, Train_acc:99.4%, Train_loss:0.016, Test_acc:98.8%, Test_loss:0.028, Lr:1.00E-04
Epoch:39, Train_acc:99.2%, Train_loss:0.023, Test_acc:96.2%, Test_loss:0.126, Lr:1.00E-04
Epoch:40, Train_acc:97.9%, Train_loss:0.054, Test_acc:98.3%, Test_loss:0.062, Lr:1.00E-04
Done
# ## 四、结果可视化
# ### 1.Loss与Accuracy图

# import matplotlib.pyplot as plt
# #隐藏警告
# import warnings
# warnings.filterwarnings("ignore")               #忽略警告信息
# plt.rcParams['font.sans-serif'] = ['sans-serif'] # 用来正常显示中文标签
# plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
# plt.rcParams['figure.dpi']         = 100        #分辨率

# epochs_range = range(epochs)

# plt.figure(figsize=(12, 3))
# plt.subplot(1, 2, 1)

# plt.plot(epochs_range, train_acc, label='Training Accuracy')
# plt.plot(epochs_range, test_acc, label='Test Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')

# plt.subplot(1, 2, 2)
# plt.plot(epochs_range, train_loss, label='Training Loss')
# plt.plot(epochs_range, test_loss, label='Test Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.show()

这周自己学习时间没有合理安排,导致任务完成得比较差,由于截至时间要到了,所以想先提交打卡,再找时间研究学习,噫噫噫呜呜呜噫…认识到错误了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值