前言
本篇文章主要讲解yolov8模型训练自己数据集全过程,包括环境搭建、数据集准备、模型训练、模型验证、模型预测等
yolov8源码地址:https://github.com/ultralytics/ultralytics
一、环境搭建
在这之前,需要准备基础环境:
ubuntu20.04、python=3.8、pytorch=2.0.0、cuda=11.8
方法一:准备好基础环境后,进行自己创建的虚拟环境,安装ultralytics库,只需安装这一个
pip install ultralytics
方法二:先克隆git仓库,再进行安装
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
二、训练准备
第一步:新建datasets目录,将数据集放入,数据集结构如下:
第二步:在datasets目录下,新建一个data_tt100k.yaml文件
以下是我新建的,里面写绝对路径(主要是怕出错):
数据集的准备已经就绪,索引文件在data目录下的train.txt/val.txt/test.txt中
第三步:进入ultralytics/ultralytics/cfg/models/v8文件夹下,修改网络模型配置文件,更改类别
三、开始训练
yolov8关于模型的各种参数其实都写到了一起(包括训练、验证和推理的参数),在/root/ultralytics/ultralytics/cfg/default.yaml中,通过使用这些指令我们可以实现各种所需的操作。
由于yolov8代码中没有提供模型训练代码,这里新建一个train.py文件,主要包括训练参数,代码如下:
from ultralytics import YOLO
if __name__ == '__main__':
# 加载模型
model = YOLO(r'yolov8.yaml') # 不使用预训练权重训练
model = YOLO(r'yolov8.yaml').load("yolov8n.pt") # 使用预训练权重训练
# 训练参数 ----------------------------------------------------------------------------------------------
model.train(
data=r'datasets/data_tt100k.yaml',
epochs=300, # (int) 训练的周期数
patience=50, # (int) 等待无明显改善以进行早期停止的周期数
batch=32, # (int) 每批次的图像数量(-1 为自动批处理)
imgsz=640, # (int) 输入图像的大小,整数或w,h
save=True, # (bool) 保存训练检查点和预测结果
save_period=-1, # (int) 每x周期保存检查点(如果小于1则禁用)
cache=False, # (bool) True/ram、磁盘或False。使用缓存加载数据
device='', # (int | str | list, optional) 运行的设备,例如 cuda device=0 或 device=0,1,2,3 或 device=cpu
workers=8, # (int) 数据加载的工作线程数(每个DDP进程)
project='runs/train', # (str, optional) 项目名称
name='exp', # (str, optional) 实验名称,结果保存在'project/name'目录下
exist_ok=False, # (bool) 是否覆盖现有实验
pretrained=True, # (bool | str) 是否使用预训练模型(bool),或从中加载权重的模型(str)
optimizer='SGD', # (str) 要使用的优化器,选择=[SGD,Adam,Adamax,AdamW,NAdam,RAdam,RMSProp,auto]
verbose=True, # (bool) 是否打印详细输出
seed=0, # (int) 用于可重复性的随机种子
deterministic=True, # (bool) 是否启用确定性模式
single_cls=False, # (bool) 将多类数据训练为单类
rect=False, # (bool) 如果mode='train',则进行矩形训练,如果mode='val',则进行矩形验证
cos_lr=False, # (bool) 使用余弦学习率调度器
close_mosaic=0, # (int) 在最后几个周期禁用马赛克增强
resume=False, # (bool) 从上一个检查点恢复训练
amp=True, # (bool) 自动混合精度(AMP)训练,选择=[True, False],True运行AMP检查
fraction=1.0, # (float) 要训练的数据集分数(默认为1.0,训练集中的所有图像)
profile=False, # (bool) 在训练期间为记录器启用ONNX和TensorRT速度
freeze=None, # (int | list, 可选) 在训练期间冻结前 n 层,或冻结层索引列表。
# 分割
overlap_mask=True, # (bool) 训练期间是否应重叠掩码(仅适用于分割训练)
mask_ratio=4, # (int) 掩码降采样比例(仅适用于分割训练)
# 分类
dropout=0.0, # (float) 使用丢弃正则化(仅适用于分类训练)
# 超参数 ----------------------------------------------------------------------------------------------
lr0=0.01, # (float) 初始学习率(例如,SGD=1E-2,Adam=1E-3)
lrf=0.01, # (float) 最终学习率(lr0 * lrf)
momentum=0.937, # (float) SGD动量/Adam beta1
weight_decay=0.0005, # (float) 优化器权重衰减 5e-4
warmup_epochs=3.0, # (float) 预热周期(分数可用)
warmup_momentum=0.8, # (float) 预热初始动量
warmup_bias_lr=0.1, # (float) 预热初始偏置学习率
box=7.5, # (float) 盒损失增益
cls=0.5, # (float) 类别损失增益(与像素比例)
dfl=1.5, # (float) dfl损失增益
pose=12.0, # (float) 姿势损失增益
kobj=1.0, # (float) 关键点对象损失增益
label_smoothing=0.0, # (float) 标签平滑(分数)
nbs=64, # (int) 名义批量大小
hsv_h=0.015, # (float) 图像HSV-Hue增强(分数)
hsv_s=0.7, # (float) 图像HSV-Saturation增强(分数)
hsv_v=0.4, # (float) 图像HSV-Value增强(分数)
degrees=0.0, # (float) 图像旋转(+/- deg)
translate=0.1, # (float) 图像平移(+/- 分数)
scale=0.5, # (float) 图像缩放(+/- 增益)
shear=0.0, # (float) 图像剪切(+/- deg)
perspective=0.0, # (float) 图像透视(+/- 分数),范围为0-0.001
flipud=0.0, # (float) 图像上下翻转(概率)
fliplr=0.5, # (float) 图像左右翻转(概率)
mosaic=1.0, # (float) 图像马赛克(概率)
mixup=0.0, # (float) 图像混合(概率)
copy_paste=0.0, # (float) 分割复制-粘贴(概率)
)
训练时比较重要的几个参数:
YOLO(): 这个参数里面可以写你模型 yaml文件的路径,也可以直接写 .pt 文件
YOLo().load(): 如果你不加 .load(),那就是不使用权重从头训练,加了就是使用使用预训练权重训练
data :数据集 yaml 文件的路径
epochs: 训练轮数
batch :batch size的大小
cache :设置成 True 可以加速训练
patience :早停轮数,不想设置早停的话,可以把这个值设置成一个非常大的数
optimizer: 优化器,最新版应该是提供了 7 种,注释有写包含哪几种,还可以设置成 auto
close_mosaic: 最后多少轮关闭马赛克数据增强,这是一种训练技巧,很有效,一般设置 10-30
resume : 断点续训,一个最实用的参数,直接在这里写你断了的那轮的last.pt 的路径就接上了
single_cls: 数据集是单个类别的时候记得开启,不开其实也没事
cos_lr:是否开启余弦学习率
label_smoothing : 数据集标注质量很差的时候可以考虑给这个参数设置个0.1-0.5
device :多 GPu 训练时这里直接写一个列表,比如[0,1]
训练结果保存在runs文件夹下:
PR曲线图:
四、模型验证
YOLO(): 这里写你想要验证的权重的路径,如best.pt
data :这里写自己数据集 yaml 文件的路径
split :写val就是看验证集的指标,写 test 就是看测试集的指(前提是划分了测试集)
batch :测试速度时一般都设置成1(验证比较稳定),设置越大,速度越快
同上,新建val.py文件,代码如下:
from ultralytics import YOLO
if __name__ == '__main__':
# 加载模型
model = YOLO('/root/ultralytics/runs/detect/train2/weights/best.pt')
# 验证模型
metrics=model.val(
val=True, # (bool) 在训练期间进行验证/测试
data='/root/ultralytics/datasets/data_tt100k.yaml',
split='val', # (str) 用于验证的数据集拆分,例如'val'、'test'或'train'
batch=1, # (int) 每批的图像数量(-1 为自动批处理)
imgsz=640, # 输入图像的大小,可以是整数或w,h
device='0', # 运行的设备,例如 cuda device=0 或 device=0,1,2,3 或 device=cpu
workers=8, # 数据加载的工作线程数(每个DDP进程)
save_json=False, # 保存结果到JSON文件
save_hybrid=False, # 保存标签的混合版本(标签 + 额外的预测)
conf=0.001, # 检测的目标置信度阈值(默认为0.25用于预测,0.001用于验证)
iou=0.6, # 非极大值抑制 (NMS) 的交并比 (IoU) 阈值
project='runs/val', # 项目名称(可选)
name='exp', # 实验名称,结果保存在'project/name'目录下(可选)
max_det=300, # 每张图像的最大检测数
half=False, # 使用半精度 (FP16)
dnn=False, # 使用OpenCV DNN进行ONNX推断
plots=True, # 在训练/验证期间保存图像
)
print(f"mAP50-95: {metrics.box.map}") # map50-95
print(f"mAP50: {metrics.box.map50}") # map50
print(f"mAP75: {metrics.box.map75}") # map75
speed_metrics = metrics.speed
total_time = sum(speed_metrics.values())
fps = 1000 / total_time
print(f"FPS: {fps}") # FPS
验证结果如下:
五、模型推理
新建detect.py文件,代码如下:
from ultralytics import YOLO
if __name__ == '__main__':
# 加载模型
model = YOLO(r'runs/detect/train/weights/best.pt') # YOLOv8n模型
model.predict(
source=r'datasets/images/test',
save=True, # 保存预测结果
imgsz=640, # 输入图像的大小,可以是整数或w,h
conf=0.25, # 用于检测的目标置信度阈值(默认为0.25,用于预测,0.001用于验证)
iou=0.45, # 非极大值抑制 (NMS) 的交并比 (IoU) 阈值
show=False, # 如果可能的话,显示结果
project='runs/predict', # 项目名称(可选)
name='exp', # 实验名称,结果保存在'project/name'目录下(可选)
save_txt=False, # 保存结果为 .txt 文件
save_conf=True, # 保存结果和置信度分数
save_crop=False, # 保存裁剪后的图像和结果
show_labels=True, # 在图中显示目标标签
show_conf=True, # 在图中显示目标置信度分数
vid_stride=1, # 视频帧率步长
line_width=3, # 边界框线条粗细(像素)
visualize=False, # 可视化模型特征
augment=False, # 对预测源应用图像增强
agnostic_nms=False, # 类别无关的NMS
retina_masks=False, # 使用高分辨率的分割掩码
boxes=True, # 在分割预测中显示边界框
)
六、onnx导出
方法一:CLI 指令导出方式
yolo task=detect mode=export model=runs/detect/train/weights/best.pt
方法二:python 指令导出方式
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained
# Export the model
model.export(format='onnx')
导出有关的具体参数如下:
format torchscript 导出的模型格式
keras False 是否使用Keras
optimize False TorchScript: 是否针对移动设备进行优化
int8 False CoreML/TF的INT8量化
dynamic False ONNX/TF/TensorRT: 是否动态轴
simplify False ONNX: 是否简化模型
opset ONNX: 操作版本(可选)
workspace 4 TensorRT: 工作空间大小(GB)
nms False CoreML: 是否添加NMS
注释:TorchScripts是pytorch的模型导出工具,INT8(8位整数量化)是一种量化方法,可将神经网络参数表示为8位整数,以降低存储的计算成本。onnx是一种跨平台、开放式的机器学习框架。TensorRT是一种用于加速深度学习推理的高性能引擎,CoreML是苹果公司推出的机器学习框架。Keras是一种流行的深度学习框架。
使用Netron对onnx网络结构查看