本科的毕业设计:微博情感分析,分别用SVM, Bayes, DNN, LSTM, Attention+BiLSTM, XGBoost等多种模型搭建并训练正负情感二分类器

我接情感分析本科的毕业设计, 它发出来供大家交流

  • 用FastText在语料库上训练并生成词向量, 该任务语料库较小, 用fastText可以增加n-gram特征, 比传统word2vec要好
  • 训练集10000条语料, 测试集500条语料
  • 分别用SVM, Bayes, DNN, LSTM, Attention+BiLSTM, XGBoost等多种模型搭建并训练正负情感二分类器
    • SVM其实不太适合做NLP, 只是当年我还很菜所以选了SVM(尬笑), 出于情怀就贴上来了
    • Bayes速度快, 效果好。可能是因为该任务语料规模较小,在大规模语料任务上性能会下降,而且磁带模型丢失了语序信息,可拓展性不强(2020.2.13更新)
    • DNN效果不好, 不过现在也很少有直接用DNN做NLP的, 所以这里仅作为从机器学习到深度学习的过渡模型了
    • LSTM用到了上游训练的FastText词向量, 并且考虑了语序信息, 效果有明显提升
    • Attention+BiLSTM效果很好, 但相比纯LSTM提升没那么明显,主要是因为该任务相对简单且语料少。迁移至更复杂任务后注意力的强大会越来越明显
    • XGBoost真是机器学习界的一大杀器, 在这种简单的NLP任务上真是又快又好(2020.6.4更新)
  • 对不同话题下的100条微
  • 2
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
### 回答1: SVM(支持向量机)情感分析是基于机器学习算法的一种文本情感分析方法。在毕业设计中,我们可以利用SVM算法对一定范围内的文本进行情感的分类和预测,以此对社会事件、社交网络、新闻评论等文本进行主观性的分析和判断。 基于SVM情感分析算法需要进行以下步骤: 1. 数据预处理:收集、清洗、筛选原始数据,并对数据进行分词、去除停用词等处理。 2. 特征提取:通过对已经处理过的数据进行特征提取,将文本转化为数字向量,为后续分类和预测做准备。通常采用的特征提取方式有TF-IDF和词袋模型等。 3. 情感分类:利用SVM分类器对文本数据进行分类和预测,将文本情感分为正面、负面和中性三种,以此来判断文本的情感倾向。 4. 模型优化:根据数据的实际情况和分类效果,优化模型和调整参数,以提高模型的准确率和效果。 SVM情感分析算法逐渐成为了文本情感分析的主流算法,在社交网络、新闻评论、在线客服等领域有着广泛的应用前景。毕业设计中,实现SVM情感分析算法可以锻炼学生的机器学习和文本处理能力,同时培养学生的创新能力和实践能力。 ### 回答2: SVM情感分析是一种能够识别文本情感机器学习技术,其思路是将文本转化为特征向量并通过训练集确定感情极性,最后进行预测和分类。毕业设计SVM情感分析是指通过设计和实现一套完整的SVM情感分析系统,来分析文本对应的情感极性,帮助人们更好地理解和识别信息的感情倾向。 该设计思路包括以下几个关键步骤:首先,通过收集和整理大量的语料库,确定情感分类标签和特征基准,划分训练集和测试集。其次,通过特征选择和提取技术,将文本转化为特征向量,从而实现量化及可视化处理。再次,通过SVM算法进行学习与训练,建立模型并进行调优。最后,应用模型对新文本进行情感极性分类,评估和比较算法的预测效果。 在毕业设计中,需要掌握机器学习和自然语言处理的相关技术,如特征提取和转化、算法调优等,同时也需要掌握JAVA、Python等编程语言,以及相关工具和框架的使用。同时要注意的是,对于不同类型的语言和语音特点,需要采用不同的处理方式和算法,并做好相关的性能测试和评估。 总之,毕业设计SVM情感分析有着广泛的应用和研究价值,可以应用于互联网舆情分析、市场调查、情感分析等多个领域,帮助企业和个人更好地理解文本信息的情感倾向和态度,提高决策的准确性和速度。 ### 回答3: SVM情感分析是一种基于机器学习情感分类算法。该算法通过对训练语料库进行学习,得到一个能够将文本分为正面、负面和中性情感分类器。在实际应用中,SVM情感分析技术可以用于电商评论、社交媒体内容以及新闻报道等文本数据的情感分类,以帮助人们更好地了解公众对于产品、事件和社会问题的态度和看法。 如果想要开展毕业设计SVM情感分析,可以按照以下步骤进行: 一、确定研究问题:毕业设计的第一步是确定研究问题,了解所选题目的背景、研究现状和应用场景。 、数据采集和预处理:SVM情感分析需要使用大量的文本数据,因此可以通过网络爬虫等方式进行数据采集,并对数据进行初步的清洗和预处理,例如去除标点符号、停用词和数字等。 三、特征提取:SVM情感分析需要将文本转换为向量形式,所以需要进行特征提取。特征提取一般包括词袋模型、TF-IDF等。 四、训练SVM模型:将SVM算法与数据集结合起来进行训练SVM算法训练过程一般包括参数调整、模型选择和性能评估等步骤。 五、测试模型及结果分析:在测试阶段,使用测试集对模型进行测试,并对模型的性能进行评估。根据测试结果可以对模型进行优化和改进。 六、毕业设计论文撰写:在毕业论文撰写过程中,对于SVM情感分析算法的原理、技术细节、实验结果和应用场景进行叙述和分析。 毕业设计SVM情感分析是一项有挑战性的研究项目,需要具备一定的编程、数学和文献查找等能力。通过对该项目的研究和实践,能够全面掌握机器学习技术和情感分析应用方法,为今后从事相关领域的工作打下坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小夕Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值