scanpy去除批次效应

scRNA-seq数据常常受到批次效应影响,表现为不同批次间的细胞表达差异。BBKNN、harmony、mnn、scanorama和combat是用于校正这种效应的方法。BBKNN通过PCA和UMAP可视化展示校正效果,而harmony和combat也是常见的批次校正工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

scRNA-seq通常需要跨多个批次生成数据。不同批次的处理往往会出现不可控的差异,例如操作人员的变化、试剂质量的差异。这导致在不同批次的细胞中观察到的表达存在系统性差异,我们将其称为“批次效应”。很多方法可以去除批次效应,BBKNN、harmony、mnn、scanorama、combat等。

  1. BBKNN

sc.tl.pca(adata_concat)
sc.external.pp.bbknn(adata_concat, batch_key='batch')
sc.tl.umap(adata_concat)
sc.pl.umap(adata_concat, color=['batch', 'louvain'], legend_fontsize=8, save='_pbmc68k_louvain_label_bbknn.png')
  1. harmony

  1. combat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值