【第四章】回归模型拓展

1、能够列出 LASSO 回归的公式,解释公式中||w||1 的含义 。

 其中||w||1即为矩阵的1-范数,入为1-范数项的系数。

2、能够从正规方程角度和正则化角度解释 LASSO 回归的作用。

正则化角度:

LASSO回归是在线性回归的损失函数后面加一个L1正则化项

L1:距阵中所用元素的绝对值之和。使那些不重要的特征系数逐渐为0,从而保留关键特征,使模型简化。

正规方程角度:

LASSO回归的不同之处在于它使用L1正则化项对参数进行约束。通过修改线性回归模型的优化函数,LASSO回归可以在高维数据集中更好地处理特征选择问题。

3、了解矩阵范数的基本概念,知道常用的 1 范数和 2 范数的计算方法。

 4、解释为什么 LASSO 回归为什么不能使用梯度下降法进行优化?

LASSO 回归不能使用梯度下降法进行优化的原因是 L1 正则化项不是可微的,它是由绝对值函数构成的,这使得通过梯度下降法进行优化变得困难。相反,LASSO 回归通常使用坐标下降或者最小角回归等算法进行优化。

5、结合图 4-2 阐述坐标下降法的基本过程。

6、 能够复述 LASSO 回归使用 Numpy 建模的基本流程。

7、能够结合图 4-1 解释 LASSO 回归为什么特征参数会被压缩到 0。

 

 8、能够列出 Ridge 回归的公式,解释公式中||w||2 的含义 。

 9、能够从正规方程角度和正则化角度解释 Ridge 回归的作用。

正规方程角度:

岭回归是对线性回归模型的正规方程进行修改,目的是使模型在解决过度拟合问题时更加稳定。与标准线性回归模型不同的是,岭回归在解决矩阵无法求逆的情况下,并通过添加一个偏置项使模型更具可解释性,有效地解决了多重共线性问题。

正则化角度:

Ridge回归是使用L2作为惩罚项改造线性回归损失函数模型。

L2:距阵中所用元素的平方和再求均方根。最小化参数矩阵的每个元素,使其无限接近于0但又不像L1那样等于0

10、结合图 4-4 阐述 Ridge 求解参数的过程,以及是怎样使得参数尽可能接近于 0 的

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hellenionia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值