基于matlab实现的多普勒频移海底混响点散射模型程序

完整程序:

 %有多普勒频移的海底混响点散射模型
clear all; close all; clc    


H=100;              %海水深度
D=50;               %合置声纳深度
c=1500;             %声速
azm=pi/6;          %水平方位角
u=-27;              %垂直散射系数
v=20;              %声纳运动速度
fs=25000;           %采样频率
f0=4000;            %中心频率
T=0.001;          %仿真步长
rou=0.5; % 0.85;    %散射体密度

startt=0.08;        %混响起始时间
endt=0.5;          %混响起始时间
t=0:1/fs:endt-1/fs;
Nt=length(t);
Rb1=zeros(size(t));

R1=zeros(size(t));

t1=0.05;

ts=0:1/fs:t1-1/fs;
s1=exp(1i*2.*pi.*f0.*ts);                 %CW信号

Ns=length(ts);
% 信号时域
figure(1);
plot(ts,real(s1));
axis([0 0.06 -1 1]);    %axis([xmin xmax ymin ymax])
xlabel('时间/s');
ylabel('幅度');
title('CW信号');

%信号频谱
X1=abs(fft(s1));

figure(2);

f=fs*(0:Ns/2)/Ns;
plot(f,X1(1:Ns/2+1));
xlabel('频率/Hz');
title('CW信号频谱')
grid on;%添加网格

m=20; %m次运算取平均
for i=1:m
    for tr=startt:T:endt
        r1=tr*c/2;
        r2=(tr+T)*c/2;
        As=(r2^2-r1^2)*azm/2;
        Na=poissrnd(As*rou,1,1);  %产生均值为面积的按泊松分布的一个数
        r=r1+rand(1,Na)*(r2-r1);
        phi=rand(1,Na)*2*pi;
        alf=-pi/12+pi/6.*rand(1,Na);
        for n=1:Na
                d=r(n);
                %计算多普勒频移
                cosbt=(sqrt((r(n))^2-D^2))/r(n);
                fd1=2*v/c*f0*cos(alf(n))*cosbt;
                s1p=exp(1i*2.*pi.*(f0+fd1).*ts);%多普勒频移相当于对入射波进行了频移

                Nrt=fix(d/c*2*fs);%取整
                Sr=sqrt(10^(u/10))*(H-D)/d;     %散射损失,采用兰伯特(Lambert)定律
                Fr=1/d;                         %传播损失
                h=Sr*Fr^2*exp(1i*phi(n));                
                if Nrt+Ns>Nt
                    Rb1(Nrt+1:Nt)=Rb1(Nrt+1:Nt)+s1p(1:Nt-Nrt).*h;
                else
                    Rb1(Nrt+1:Nrt+Ns)=Rb1(Nrt+1:Nrt+Ns)+s1p.*h;
                end
        end
    end
    R1=R1+Rb1;
end
%混响时域信号
R1=R1/m;
Rr1=real(R1);

figure(3);
plot(t,Rr1);
xlabel('时间/s');
ylabel('归一化瞬时值');
title('CW信号的混响时域信号');

%混响频谱
F1=abs(fft(Rr1));                
figure(4);
f1=fs*(0:Nt/2)/Nt;
plot(f1,F1(1:Nt/2+1));
xlabel('频率/Hz');
ylabel('归一化瞬时值');
title('CW信号的混响频域信号');


%%%%%%求多普勒%%%%%%%%%%%%%%%%%%%%%%%
tao=0.002;
fai=pi/6;
%%%找底位置%%%%%%%
tc=0:1/fs:endt-1/fs;
cpy=exp(1i*2*pi*f0*tc).*(tc>0 & tc<t1);
CPY=conj(fft(cpy));

R2=fft(R1);
crr=ifft(R2.*CPY);

figure(5)
plot(t,real(crr))

[~,bt]=max(real(crr));


tn=tao*fs;
x1=R1(bt:end-tn);
x2=R1(bt+tn:end);
xout=x1*x2';
fb=abs(angle(xout)/2/pi/tao)
vout=fb*c/2/cos(fai)/f0

    
 

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习不好的电气仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值