基于知识表示学习的通信辐射源威胁评估方法

本文提出将知识图谱和表示学习TransE模型应用于通信辐射源威胁评估,构建通信辐射源威胁评估知识图谱本体,通过TransE模型挖掘隐藏关系,提升威胁评估准确率。实验表明,随着数据动态变化,威胁评估的准确率得到提升,证实了该方法的有效性和可扩展性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘  要】复杂动态电磁环境下,通信辐射源威胁评估技术面临评估要素不完备、评估数据多源和知识动态可扩展等挑战。为解决这一问题,提出了将知识图谱应用于通信辐射源威胁评估,完成通信辐射源威胁评估知识图谱的本体建模,并利用知识图谱表示学习中的TransE模型挖掘通信辐射源间的隐藏关系,从而推理出通信辐射源的威胁等级。TransE模型的链路预测实验结果表明,随着数据的新增与动态变化,威胁评估准确率得到提升。

【关键词】通信辐射源;知识图谱;表示学习;威胁评估;链路预测

0   引言

通信对抗作为电子对抗的一种,是敌我双方在通信领域争夺电磁优势的方式。其中分布式协同干扰是一种电子对抗手段,通过分散抛撒或配置多个电子设备在地、海、空域内攻击目标,具有数量多、范围广等特点,具备电子对抗的优势。以“狼群”系统为例,2000年美国国防高级研究计划局(DARPA, Defense Advanced Research Projects Agency)对外宣布开始进行狼群(WOLFPACK)网络化电子战研究[1],利用体积小、重量轻的小型电子干扰机在电子攻击目标的活动区域内,自动地对选定的电子设备进行干扰。该系统以分布式网络结构交换数据,以分布式干扰方式破坏敌方通信链路,对敌方通信辐射源像狼群围攻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值