融合创新!全局注意力+局部注意力,训练成本直降91.6%

全局注意力结合局部注意力可以让模型在处理数据时,既不会丢失重要的局部细节,也能考虑到整个数据集中的全局结构,从而在保持模型计算效率的同时,提高模型的表达能力。

这种策略相较于传统的单一注意力机制,能够更全面地理解输入数据,同时捕捉长距离依赖关系和细节信息。对于论文er来说,是个可发挥空间大、可挖掘创新点多的研究方向。

以谷歌Quoc Le团队的FLASH模型为例:

FLASH是一种解决现有高效Transformer变体质量和经验速度问题的实用解决方案。它通过以下方式实现全局注意力和局部注意力的结合:

分块混合注意力(Mixed Chunk Attention):FLASH模型采用了一种分块的策略,将输入数据分成多个块,并在每个块内部进行局部注意力计算。这样可以捕捉到每个数据块内部的详细信息,同时减少整体的计算量。

全局注意力单元(GAU):FLASH模型使用了全局注意力单元(GAU),这是将门控线性单元(GLU)和注意力机制结合起来的一种结构。GAU的设计允许模型在处理数据时考虑到更广泛的上下文信息,从而实现全局注意力的效果。
 


FLASH首次不仅在质量上与完全增强的 Transformer相当,而且在现代加速器的上下文大小上真正享有线性可扩展性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值