美军认知电子战关键技术发展方向分析

本文分析了美军在认知电子战领域的关键技术发展,特别是在机器学习和人工智能方面的研究,涵盖高校、智库、军事机构和厂商的最新进展。美军通过智能系统提升电子战的适应性、可靠性和实时性,解决新威胁识别、信号处理和干扰策略等问题。研究重点包括数据整合、智能模型构建、软硬件平台发展和网络空间作战应用的融合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

美军认知电子战相关概念发展迅速,也开展了较多的项目研究。为分析其关键技术发展现状并研判其未来发展趋势,从美高校、智库、军事科研机构、厂商 4 个角度,通过研究论文、报告等公开文献,对美军认知电子战关键技术发展情况,特别是其在机器学习、人工智能方面的探索进行了深入的分析,对美军认知电子战技术领域研究方向、潜在难题及对应的关键技术思路进行了较为全面的梳理,并从数据、模型、平台、应用等方面给出了启示。

内容目录:

1 高  校

1.1 弗吉尼亚理工大学

1.2 约翰霍普金斯大学

1.3 东北大学

1.4 其他高校

2 智  库

2.1 兰德公司

2.2 战略与预算评估中心

2.3 国会研究服务部

3 美军研究机构

3.1 联合参谋部

3.2 陆  军

3.3 空  军

3.4 海  军

3.5 测评机构

4 厂  商

4.1 BAE 公司

4.2 其  他

5 发展启示

6 结  语

传统的电子战系统探测到感兴趣的敌方雷达或无线电信号后,会将其与系统威胁库中的已知信号进行匹配识别。一旦信号被识别,干扰机会立即选择一个预先加载的对抗算法并发射干扰信号,从而对特定的雷达和无线电接收机实现干扰或欺骗。

随着认知雷达和认知无线电应用的发展,这些用频设备使用不断变化的新波形来应对环境变化,导致传统的电子战系统无法实现对敌方信号的准确认知及干扰算法的最优匹配,同时复杂电磁环境中存在着各类密集信号或新信号可能会掩盖敌方信号。因此,传统电子战面临对新威胁感知难度大、目标自主感知与应变能力强及对抗组网信息系统难度大等挑战。

对此,美军提出了认知电子战概念,通过先验知识及自主交互学习来感知并改变周围局部电磁环境能力的智能、动态的闭环系统,可基于对电磁环境快速变化的实时感知来高效地调整接收以及干扰方式,提高系统的适应性与可靠性。认知电子战改变了传统电子战因为“人在回路”导致的环境适应能力、效能评估能力及实时性和灵活性等能力缺陷,实现电子战从“人工认知”向“机器认知”的升级,而基于静态数据库的模式将转向基于快速机器学习的认知电子战架构,以响应敌方不断发展带来的需求。

在上述背景下,以人工智能为特色的美军电子战项目推进与技术突破得到了快速发展,相关成果也逐步公开。现有文献主要围绕美军认知电子战项目、体系架构或是结合群体智能、马赛克战等具体方向的分析 。为了更体系化地理解美军认知电子战的研究情况,特别是其关键技术的研究方向与突破情况,本文从美高校、智库、军事机构、厂商 4 个不同角度,从样本、智能模型、安全与测评、平台与应用等多个维度进行了梳理和分析。美军认知电子战的关键技术方向如图 1 所示。下文依次展开进行了分析,并在最后对其发展思路和启示进行了梳理和总结。

图片

图 1 美军认知电子战关键技术方向

1

高  校

1.1 弗吉尼亚理工大学

弗吉尼亚理工大学 Timochy O’Shea 团队在早期认知无线电网络机器学习的基础上,于 2016 年开展了基于卷积神经网络的无线信号调制识别研究,在美海军研究实验室、美国国防部高级研究计划 局(Defense Advanced Research Projects Agency,DARPA)、美国航空航天局(National Aeronautics and Space Administration,NASA)等机构支持下研究了调制识别的深度架构、无线信道状态信息神经估计与基于生成式对抗网络(Generative Adversarial Network,GAN)的信道生成分析评估结构化无线通信信号无监督表征等技术;同时,该团队对学术界的另一个贡献是陆续建立了 RadioML 系列的调制方式识别开源数据集,以及宽带信号识别数据集 。值得一提的是,该团队还创建了 DeepSig 公司,开发了智能信号检测识别软件工具 OmniSIG,并推出与软件无线电平台、智能计算平台结合的信号分析AI 产品。基于 OmniSIG 并利用具有丰富类别的真实信号基线数据集和 GPU 算力,可以快速识别异常信号,并支持信号数据的用户自定义和深度学习模型的用户定制,支持标记、训练和识别基线数据库未包含的未知信号。

此外,该校还开展了信号类型开集识别方法研究, 并 对 4G、5G 上 下 行 信 号、Wi-Fi 6、 蓝 牙、NB-IoT 及多种调制方式的信号制式进行了训练与开集验证 ,利用极化信息与阵列天线进行多目标定位与聚类,以及基于通用学习(Universal Learning)的雷达跟踪波形选择 。

1.2  约翰霍普金斯大学

约翰霍普金斯大学应用物理实验室(Applied Physics Laboratory,APL)是美军网络安全、认知电子战等研究领域的总体单位。2020—2021 年,前美国海军情报官员、APL 实验室研究人员 J. Micheal Dahm 结合各类图像情报进行分析后,发布了涉及短波通信、岛间通信、水下光缆、卫星通信、雷达、电子战与情报等方面的南海军事能力系列分析报告。

2017 年,DARPA 频 谱 协 作 挑 战(Spectrum Collabor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值