碳纤维汽车轮毂的刚度和强度分析

摘  要

轮毂是汽车的核心组成部分,它位于汽车的前端,负责传递汽油的动能。它既能够抵抗汽油的冲击,也能够应对汽油的流动,以保证汽油的流动性。由于轮毂的复杂的受力环境和不规则的外观,使得对其进行深入的研究变得极具挑战。因此,采取有效的方法,如进行模态分析,不仅能够更好地评估其强度和振动特征,而且还能够有效地检测出其设计的正确性。模态分析可以帮助我们更好地理解和分析机械结构的运行情况,从而更准确地估算出其受到外界环境影响时的反馈,从而更好地控制和优化其运行。

在这篇文章中,我们将对特殊的汽车轮毂进行有限元分析,并使用ABAQUS软件来评价它们的结构稳固性。我们还将对它们的模态分析进行评价,并确保它们的6级模态和振动特征都能够满足预期的要求。这将有助于我们对这种特殊的轮毂的更好研究和优化。

关键词  汽车轮毂 动力学特性 模态分析 分析优化

目 

第1章 绪论... 5

1.1 课题背景... 5

1.2 汽车轻量化发展... 6

1.3 国内外研究现状分析... 7

1.3.1 轮毂的结构分析... 7

1.4 课题的研究目的及意义... 9

第2章 轮毂的参数化模型... 10

2.1 Abaqus软件介绍... 10

2.1.1 软件功能... 10

2.1.2 软件结构... 10

2.1.3 求解步骤... 11

2.1.4 求解方式... 11

2.2 轮毂基本知识及设计标准... 11

2.2.1 轮毂的基本结构... 11

2.3 参数化建模... 12

2.4 本章小结... 14

第3章 汽车轮毂的有限元计算... 16

3.1 有限元的概述... 16

3.1.1 有限元法概念... 16

3.1.2 有限元分析系统的组成... 16

3.2 汽车轮毂的模态分析... 16

3.2.1 理论基础... 16

3.2.2 模型建立... 17

3.2.3 分析结果... 18

3.3 汽车轮毂的受力分析... 19

3.4 本章小结... 20

第4章 汽车轮毂轻质材料的轻量化设计... 21

4.1 绪论... 21

4.2 轮毂结构尺寸优化... 21

4.2.1 尺寸优化理论概述... 21

4.2.2 轻质材料轮毂尺寸优化... 23

4.3 优化模型的模态分析... 24

结论... 26

致谢... 27

参考文献... 28

  1. 绪论
    1. 课题背景

中国的经济正在快速增长,人们的生活质量日益改善。作为汽车制造商,它的市场份额以及与之相关的产品正在迅猛增长[1-2]。然而,快速增长的汽车制造业同时也面临许多挑战,例如能源、环境保护、污染控制。特别是在能源方面,它仍然是影响整个汽车制造商的主要障碍。为了降低汽车能耗以获得更多的经济效益和动力性能,汽车工业的发展必须要有创新技术、新的制造材料和工艺。在汽车工业领域只有不断的加强创新能力,大胆开发新的产品,来降低能源的消耗,同时保护地球生态环境,减少汽车使用费,已经是当前汽车行业的发展目标[3-4]。在许多降低能源消耗、保护环境的方法中,实现汽车轻量化也就是降低汽车自重是最先考虑的方法之一 [5]。通过理论分析以及试验不难发现汽车的能源消耗与汽车自身重量的关系。根据大量试验证明,若汽车总重降低 10%,则消耗的汽油会下降6%~8%,气体释放会减少 4%。汽车在行驶中会遇到不同形式的阻力,例如与汽车的外观、汽车表面受到风载的面积等有关,而与汽车的重量无关的空气阻力。所以根据上述 3 种阻力与汽车重量之间的关系可知,减小汽车的自身重量,可以降低汽车在行驶过程中的大部分阻力,而且还是降低汽油消耗的有效措施。因此,汽车轻量化是一种降低汽车行驶阻力,节省能源的一种有效措施 [6-8]。 车轮在汽车结构中扮演着至关重要的角色,它不仅是保证安全的关键,更是影响汽车外观的关键因素。 只有通过车轮的传动,汽车才能够实现有效的行驶。轮毂与地面接触时,会产生力的作用及力矩。由此可以看出车轮是汽车的重要承载部件,所以车轮结构的好坏直接影响着汽车能否安全行驶和在行驶中能否保持平衡[9-10]。 轮辋和轮辐是轮毂的两大部分,汽车的轮毂需要用轮辋来支撑,车轮与车桥轴之间是由轮毂连接的,轮辋和轮毂之间是用轮辐来连接的。

当前,轮毂的类型主要有两种:钢质和合金。前者的生产过程相对较为复杂,使用的原材料较多,因此生产成本较低,而且更加耐用。 2.合金轮毂,质量轻。汽车在行驶过程中受到的阻力较小,制作要求较高,外形美观。如果以轮辐样式不同又能制作出幅板式和幅条式轮毂;按轮辋的结构可以分为:深槽、半深槽等。轮毂在保证所能承受的最大应力值和疲劳寿命的条件下,最大可能降低车轮的质量,来减少汽油燃耗和汽车行驶时所受到的阻力,这样就能增加汽车的运行速度[11-12]。 在制造过程中,残余应力是一种常见的力,它可能会影响到车轮的性能和可靠性。尽管采用相同的制造工艺,但由于残余应力的存在,车轮的结构和受力状态可能会发生变化。此外,当轮毂中充满气体时,轮辐部分也会受到气体压力的影响,从而产生动态应力,这种应力可以通过残余应力和静态初始应力的比较来确定。当汽车行驶时,车轮承受的负荷会超出其疲劳极限,因此,车轮的最大负荷水平会直接影响其使用寿命,而且,汽车的驱动力也会随着负荷的增加而发生变化[13-14]。

轮毂结构设计是在保证足够强度要求下,提高轮毂的可靠性,减轻轮毂的重量并设计出外型符合审美标准的轮毂。车轮动态弯曲疲劳实验是国际通用的标准实验方法 [15]。随着有限元法的不断改进,它已经成为一种有效的轮毂设计方法,可以有效地节省原材料,大大提升轮毂的性能和使用寿命。目前,大多数生产轮毂的厂家都用有限元法根据《轿车钢制车轮性能要求和实验方法》建立轮毂的有限元模型对其进行结构分析。根据动态弯曲疲劳试验装置,运用有限元方法对轮毂施加约束和载荷大小,通过计算可得到轮毂中应力大小和应力集中的位置,从而可以得到轮毂中易产生断裂的部位。这样在优化轮毂结构时,可以对轮毂局部位置进行修改,降低应力集中[16-17]。

 由于车轮要受到地面与轮毂相互作用力和各种力矩,所以在汽车零部件中破坏最严重。所以汽车疲劳寿命长短关系到汽车行驶的可靠性、稳定性。因此我国根据汽车行驶的实际情况,专门制定了关于汽车钢制轮毂和铝合金轮毂都要进行动态弯曲和径向疲劳试验的标准。

根据轮毂的受力工况来看,车轮在弯曲载荷的作用下造成的失效要比径向载荷造成的破坏大,所以本次分析主要是根据弯曲疲劳试验中轮毂的受力情况,对汽车轮毂进行有限元分析。为了缩短生产周期,提高制造轮毂材料的利用率,可以在作轮毂前期对其进行疲劳寿命的估算,若符合设计要求再生产,然后进行弯曲疲劳试验,这样不但能根据估算的疲劳寿命对轮毂进行再设计和改进来提高轮毂的疲劳寿命也可以在后期的疲劳试验中获得比较理想的结果[18-20]。

    1. 汽车轻量化发展

当前,能源问题的越来越严峻,节约能源成为当今社会及世界关心的重大问题,而在能源使用方面车辆的耗能是很重要的一部分,为了达到车辆节能减排的效果,车辆轻量化已经成为汽车领域发展的核心目标[21]。根据资料显示:整车的重量减少一个百分点,汽车的燃油量将同比减少一个百分点;特别是如果运动零件减少一个百分点,汽车燃油量将减少两个百分点,例如一辆自重 1360 公斤的轿车,若重量下降 10%,可节省油耗 8%。因此减小汽车重量的方法有:对汽车结构进行改善,使汽车零部件在达到要求的条件下另其更薄、零件内部空间和体积更小等;另一个方法是采用合金材料,因为合金材料的重量比钢的重量要小。在实现汽车轻量化的各种方

法中,本文着重对车轮进行轻量化的研究。大量试验证明,车轮重量的降低对于节省能源消耗的效益比减轻汽车其它部位的重量更加有效,轮毂的轮辋和轮辐在达到其安全性能要求条件时,降低其重量也可以改变汽车的重量。 所以汽车轻量化对节约能源和防止环境污染及温室效应是有很大的帮助,这也成为将来汽车工业发展的一个重要趋势。

随着科技快速发展,世界汽车工业存在着日趋紧张的三大问题,安全,能源、公害。而汽车技术的研究也是对这三大问题来进行研究,世界各国的研究机构也先后制定了各种法规,例如节约能源、废气污染、降低噪音和安全可靠。其中节约能源成为众多问题里面最突出,也是汽车研究技术发展的核心问题。所以在新世纪的到来之时,世界上大部分的汽车制造公司,从汽车市场需求的方向考虑,在注重汽车造型设计的时候,以增加其实用性、减少汽油用量为目的,达到缓解能源过度使用的紧张状况,保护生态环境,降低汽车购买费用,已经是如今汽车发展的前进方向[22]。

汽车轻量化的目的是满足汽车许用强度、可靠性条件下,最大努力减少汽车整车质量,以便增加汽车驱动力,改善汽车的用油效率,保护环境。事实正明,如果将汽车的质量降低 50﹪,那么汽油的消耗也会降低大约 50﹪。在当今汽车发展的潮流中,汽车轻量化根据环境保护和节约能源的要求,已经占有重要的地位。 汽车轻量化的方法为:

1.在汽车主要参数不变前提下改进汽车的结构;2.采用现代设计方法中的结构优化法、有限元法等;3.降低车身板材的厚度或采用如铝、镁、陶瓷、碳纤维等的复合轻质材料。

    1. 国内外研究现状分析
      1. 轮毂的结构分析

海交通大学的尹冀通过分析钢制车轮在静止和大应变下的受力情况,建立两种角度的车轮有限元模型,并且用简化模型对轮辋进行重量优化,为钢制车轮冲击性能仿真分析与轻量化设计提供借鉴[23]。华北电力大学刘真运用CAE/CAM等相关软件,对所选的铝合金轮毂建立模型、利用有限元法计算轮毂受力情况和大小、优化轮毂尺寸等,在保证轮毂的结构满足应力强度和疲劳寿命的前提下,提高设计轮毂的工作效率,扩大经济效益[24]。清华大学的王笑峰等通过国家规定的车轮动态弯曲疲劳实验,对两种不同型号轮毂进行建模。通过受力分析,可以快速准确地确定轮毂结构中容易产生断裂的位置。由此可以反映出该处的应力集中分布情况,然后根据疲劳实验,验正计算结果是否合理。结果表明,轮毂中轮辋和轮辐所承受的应力也许不是对称应力循环[26]。

重庆大学周渝庆[27]利用CAE软件ABAQUS,通过计算机模拟,精确地控制了轮辐与轮辋的厚度,并且通过弯曲疲劳实验,确定了轮毂的最大载荷,以及整个轮毂的重量,从而实现了轮毂的轻量化[28][30]。李瑞锦和他的团队通过有限元分析发现,当货物以较慢的速度运动,它们的轮毂会因承受的过多的外力而发生损伤,这种损伤的表现是高周期的疲劳损伤。相反,如果货物以更快的速度运动,它们的轮毂会承担更多的外力,这种情况会导致它们的最终极限载荷[29]。崔青玲利用 有限元分析软件,研究了轮毂的结构强度,并且提出了一种有效的防止裂纹的方法:在螺栓孔和通风孔的外部加厚。经过这一改善,轮辐的强度显著提升,达到了轻量化的目的。孙红梅教授利用有限元法,结合 17 英寸结构的汽车轮毂,研究其对于模态、刚度、弯曲疲劳损伤的反应,构建出一个有效的优化设计模型,并进行相应的模态分析,从而有效地提高了汽车轮毂的性能。经过精心设计和优化,我们获得了一个完美的轮毂结构尺寸[31],满足了所有参数的要求。 齐铁力,王立辉等利

通过使用PATRAN软件,崔胜民和杨占春提出了一种基于轮辐和轮辋的厚度的函数模型,旨在将汽车轮毂的重量降到最低 。他们利用这一数学模型,将每一段轮辐的曲面半径和相关的圆心角都考虑在内,并将整条曲线的弧长缩短到最低,从而实现了轮毂的重新定义和改善,使得轮毂的重量得到有效的降低,同时也使得它的结构尺寸得到有效的改善。经过刘国军的研究,他利用三维软件 建模,以及CAE软件ABAQUS,大大降低了轮毂的重量[32],而且还可以有效地降低轮毂承载的应力,使得轮毂的应力值更低[33]。他的研究结果表明,即使是相同的应力值,合成材料的轮毂也会更加轻巧[34]。经过精心的改进,我们使用了更加轻巧的制造的轮辋,并且在安装时加大了凸缘的厚度,从而降低了整体的重量。

在国外,大量学者对汽车车轮的结构设计进行了研究。Milo Slav Riesner应用MSC/ NASTRAN有限元软件对汽车进行了轮毂的结构设计,在优化设计方面,定义了Noise 、Vibration、Harshness和疲劳相关的约束条件。MSC/ NASTRAN进行自动优化设计与OPUS(优化过程的实用系统)相结合,采用了与设计相关的设计变量,对车轮进行优化设计,这种分析技术代表一个实用的方法的机动车辆的车轮的设计,结构分析,和优化。土耳其H.Akbulut基于汽车轮毂的冲击试验,以轮毂结构单元的重要节点的位移变化量作为设计变量,结构应力最小为目标函数进行结构优化。

Hamid Jahed,Behrooz Farshi等建立了三次样条曲线的轮毂模型,将曲线函数的各项参数当作自变量,利用MATLAB优化工具进行优化[37]。

    1. 课题的研究目的及意义

为了达到更快、更经济、更环保的效果,我们必须尽力减少轮毂重量,并且充分利用它们的结构特点。因此,我们不仅仅关注它们的重量,还必须关注它们的刚度,并通过减少它们的变形来增加它们的圆滑程度,从而更好地控制它们,从而达到更好地控制汽车行驶速度、更好地控制燃料消耗,并且增加它们的安全系数。基于有限元法的优化设计是当前主要的设计手段,对于汽车轮毂行业来说是汽车轮毂轻量化设计的重要工具。通过对轮毂轻量化的研究,我们应用了较为成熟的分析工具来解决实际问题,并不断地加强自身本领以满足时代发展的需要。汽车轮毂的轻量化设计不仅能够提高企业的研究水平和竞争力,而且有助于节省原材料,缩短生产周期,降低生产成本,减少能源损耗,改善生态环境。

通过对某工厂生产的钢制轮毂的强度分析和结构优化设计,我们可以有效地实现轻量化的目标。根据疲劳的相关知识对材料同时受到弯曲和扭转时造成的疲劳损伤进行估算,并估算出其使用寿命等。根据轮毂的结构特点,建立轮毂的实体模型,在参数化建模的过程中将尽可能多的轮毂尺寸设为变量,为后期的优化设计提供了方便,然后根据轮毂实际工作情况,计算轮毂参数化模型应力大小。经过研究,我们可以将减少汽车轮毂重量作为目标,并将影响轮毂重量的因素作为设计变量,在满足特定限制条件的前提下,实现轮毂的最佳优化设计。具体作法为先在ABAQUS软件里建立实体模型,特殊部位经简化处理后,采用ABAQUS软件中GUI和参数化建模相结合的方法,对轮毂进行参数化建模,对轮毂的形状以及尺寸进行了合理的优化。根据有限元计算,对轮毂的结构进行了再设计,为轮毂的前期造型设计方案有一定的参考价值。最后总结出一种新的估算疲劳寿命公式,并通过实验验证了此公式的准确性。

  1. 轮毂的参数化模型
    1. Abaqus软件介绍
      1. 软件功能

ABAQUS是目前应用最广泛的工程应用软件,它能有效地解决从结构到固体力学等复杂的系统,尤其是一些很复杂的问题。作为仿真工具,生活中其实存在许多,但是ABAQUS软件的仿真涉及的领域极其多,如土木建筑等相对年代久远的行业,又如航空航天,电子技术等新兴产业,都有它的出现。它不仅可以求解很多复杂的本构问题,而且可以实现静态、准静态、瞬态分析、弹塑性材料的破坏、接触分析等。另外,它还能进行热力学与固体力学的耦合、声场、电压、热点耦合、流固耦合等分析。

      1. 软件结构
  1. 前处理器

前处理器主要是结合问题的实际情况,可行性以及实用性等,用来建立所要问题的仿真模型及精确的网格划分,这样才能保证软件模拟出来的与实际相似。在ABAQUS中,一般的方法是使用 ABAQUS/CAE或其他预处理程序﹐可以手工或输入背景程式。或者用其他专业的建模软件来导入,这些都是不错的选择。

  1. 求解器

ABAQUS主要解决复杂的结构模型问题,特别是能够仿真复杂的物体,可以进行多种工况的尝试,其中包括混凝土、环氧树脂、新能源材料以及岩石地质灾害等地质材料其它工程问题。在这个阶段,使用ABAQUS/Explicit求解根据实际问题所模拟出来的数学模型,边界条件,分析步骤等,计算过程通常在后台运行,后台涉及到了python语言,对于软件的二次开发ABAQUS也有很强大的功能,为了方便后处理,将分析结果以二进制格式存储,并根据问题的复杂性、 CPU的性能等因素,确定了该问题的解决时间。

  1. 后处理器

ABAQUS软件带有功能比较强大的后处理功能。后处理过程,最后模型输出一个ODB文件,这个文件可以直接进行可视化,用于结构处理结果的展示与汇总。

      1. 求解步骤

ABAQUS软件求解的步骤如下所示:

  1. 根据实际问题建立对应的模型结构,保证模型的准确性和完整性。
  2. 定义材料属性。
  3. 装配部件,定义相互接触。
  4. 网格划分。
  5. 确定边界的类型和边界条件。
  6. 调整计算时一些控制参数和需要监视的系数等。
  7. 定义场输出和历程输出等。
  8. 设定分析步,开始计算。
  9. 结果后处理。
      1. 求解方式

ABAQUS有两种解决方法:显式动力学的和隐式动力学。明确地给出了“条件收敛”的方法。通常,在符合限制条件下逐步进行的计算是可行的。而在隐式算法中,存在着非线性条件下的非收敛性。例如,材料的应力、接触、塑性或失效、断裂、弯曲不稳定性等,可能不会多次收敛,增量步长减小,直到满足最终条件。

    1. 轮毂基本知识及设计标准
      1. 轮毂的基本结构

车轮的功能用途是车辆所执行的驱动力和制动力是通过轮毂与路面的附着力来实现的能支撑整个车辆的所有重量可以缓和来自不平整路面所产生的冲击力在遇到障碍物时能保证车辆顺利通过,汽车在弯道上行驶时,车轮有自动回转力偶来侧抗力相互作用。下面是汽车轮毂的主要组成及各部分的作用:

1.轮辋与轮毂配合,起支撑作用;2.轮辐与车轮车轴连接;3.轮缘是保持并支撑轮毂方向的轮辋部分,轮缘的外沿部分很容易遭受外力载荷的冲击,而且在冲击后很容易产生变形,甚至形成裂纹导致汽车轮毂胎压的泄漏;4.胎圈座与轮毂的胎圈接触,作用时支撑轮毂径向的轮辋部分;5.槽底是为了装拆轮毂而留的一个凹坑;6.气门孔是轮毂充气的位置。图 2-1 为轮毂的截面图对应轮毂各部分名称。表 2-1 轮毂结构图相应的各部位名称

图2-1 轮毂结构图

表2-1 轮毂结构序号表

位置序号

名称

位置序号

名称

1

轮辋宽度

10

螺栓孔节圆直径

2

轮辋名义直径

11

螺栓孔直径

3

轮缘

12

轮辐安装面

4

胎圈座

13

安装面直径

5

凸峰

14

后距

6

槽底

15

轮辐

7

气门孔

16

轮辋

8

偏距

17

轮辋中心线

9

中心孔

18

    1. 参数化建模

在进行轮毂参数化建模之前,我们需要明确轮毂的优化目标,即在保证足够强度的前提下,尽可能降低其质量。具体而言,我们可以通过将轮辋的厚度 L 作为参数,以及利用轮辐厚度来进行参数化处理,从而实现轮毂的优化。

改变轮毂的形状会对其性能产生重大影响。可以通过改变轮毂的形状来改善其性能,并且可以用来改善轮毂的重心 B 。这是两个最主要的参数,其余的参数还有轮辐的个数、轮辐的半径等都是可以参数化的。

图2-2 轮毂的三维模型的正视图

图2-3 轮毂的三维模型的侧视图

因为 ABAQUS 无法提供足够的信息,因此我们选择了一种更加简单的方式进行轮毂模拟。我们首先确定了一些重要的元素,然后使用一些基本的元件,如点、线和面,将它们组合在一起,构造出一个完整的轮毂。将轮毂中的各个常量用变量来代替,这些常量不仅仅要用变量来表示,而且还要将这些变量限制在一个给定的范围内变化。

下面是轮毂建模的过程:

第一步,首先,通过 ABAQUS ,我们需要确定半个轮毂的截面,因为它们具有轴向的完美对齐。然后,我们需要利用该软件,通过弧度指标,精确地绘制出轮辋的外轮廓线,并且精确地计算每个特定点的直径、高度,从而完整地展现出轮辋的完美对齐。

第二步,确定轮惘内侧曲线,将轮辋的厚度变为参数,不再是常量厚度,这样做的好处是可以根据轮毂所受应力大小来改变轮辋的厚度。所以轮辋内侧曲线的确定可以通过轮辋外侧曲线和轮辋的厚度来确定,得到内侧曲线上关键点的坐标轮辋内侧的曲线这里我们可以将轮辋分为上下两部分,然后将下部分的关键点通过对称的方法求出上部分的关键点。这样不但不会因为计算而影响整体模型而且减少计算关键点的时间和数量,为确定关键点提供了方便,将计算出的点在 ABAQUS 中定义出来并以此连接起来。再根据点、线、面之间的关系。将定义轮辋的关键点用线段连接,然后将线段围城的封闭区间填充为面。

第三步,为了更好地描述轮辋的特征,我们需要利用一些特殊的技术,如精细的测量、精细的绘图等,从而获得更加准确的轮辋轮廓线。此外,我们还需要精细地测量轮辋的特征,并从中提取出一些重要的信息,从而获得更加准确的轮辋轮廓线。 

第四步,通过精准的测量技术,精准地绘制出轮辐的内部曲率,并以 B 作为其厚度的指标。 

第五步,通过布尔运算的加法,将轮辐上的关键点连接起来,形成一个完整的轮毂截面,这个截面由于轮辋和轮辐不是同时构建的,因此需要通过这种方式将它们合并在一起。

在第六步中,我们将轮毂的截面围绕其对称轴旋转,从而创建出一个初始的模型。

通过对轮毂的参数化建模,我们发现许多常量都必须被参数化,因此,我们应该采取更加复杂的措施,即通过把轮辐的厚度、轮辐上的孔的个数、半径等作为变量,并且采取相应的措施,从而获得更加准确的优化效果,避免因缺乏足够的信息而导致的优化失败,从而达到更好的效率。根据各种因素,如轮辐的厚度、孔的大小、半径等,我们应该采取有效的措施,尽最大努力降低汽车轮辋与轮辐的重量,同时也有助于节约资源,提高整体性价比。因此,我们决定通过调整轮辐和轮辋的厚度来提高后期的性能。

    1. 本章小结

本章通过查找大量轮毂研究的相关资料,在对汽车轮毂结构有了一定了解的基础上。将轮毂的轮辋厚度,轮辐的孔数和半径变为参数,同时由于轮毂模型较为复杂。因此在采用选取较多的关键点来创建轮毂截面的这种自下向上的建模方式时,模型进行优化的前提是将模型中尽可能多的数值用参数表示出来,而且要保证参数在合理的范围内能够变化。另外还要保证模型的正确性,利用较多的参数与具体数值相结合的方法建立参数模型。

  1. 汽车轮毂的有限元计算
    1. 有限元的概述
      1. 有限元法概念

目前由于有限元法的分析计算能力强,在各个行业中都取得了理想的计算结果。这种方法是应用计算机软件代替人工计算计算。 通过有限元法解决工程问题,首先要根据这个工程问题的受力情况,做出相应的力学分析,然后再分析结果的基础上施加载荷和约束。这解决多数工程问题的常用方法,但在实际问题中由于结构复杂,受到的载荷较多,计算量大。在数学理论不断成熟的今天,有限元法和差分法是数值计算中用途最广的两种方法[52]。 有限元法其实就是把分析体分成由许多节点组成的小单元,每个单元都是由节点相互连接,应力通过节点与节点相互连接来传递,对每一个节点都建立求解方程并将这些方程联立,从而得到整个模型的基本方程。单元是由节点之间的连接组成的,由于节点的分布规律不同,造成单元的形状也不同,把一个实体模型离散成大量的单元,对模型施加的力作用在节点上,然后在各个单元上传递,根据力和位移的关系在节点上监理方程,在计算机技术高速前进下,CAE 软件的制作日益成熟,功能更加齐全,使得有限元法在工业领域、建筑领域、航空领域等都成为可靠使用的数值分析计算方法。

      1. 有限元分析系统的组成

有限元法是多个学科的计算综合在一起,成为一个计算域。有限元进行计算流程大概为如下步骤:第一步是建立模型,定义材料属性,划分网格,是前处理阶段;第二步是对模型施加载荷和约束,并对其进行计算,得到分析结果,这里可以简单的称为有限元的求解;第三步是得出计算数据并分析原因,这些工作是在后处理中完成的。

    1. 汽车轮毂的模态分析
      1. 理论基础

模态是结构的一种振动特性,模态分析是研究结构动力特性的一种方法。模态分析主要包括三部分内容:模态频率计算、模态阻尼提取和模态振型的分析。一般来说,用以测定模式基本参数的两种主要科学技术是实验模态分析法,它利用线性振动理论、动态检测高新技术、处理高新技术、参数识别技术等多种高新技术,对轮毂结构的特定技术参数进行实验,从而测定其频响函数,并将其应用于模式基本参数的测定中,从而实现对模式基本参数的准确估算。数辨识方法获得被测结构的模态参数。可见采用实验模态法必须在实验轮毂已经制造完成的前提下开展,且对结构进行优化修改更为困难,花费的资金与时间更多。

基于有限元分析的原理,有限元模态分析法可以通过计算机模拟,以质量矩阵、刚度矩阵和阻尼矩阵的形式,结合振动理论,对结构的力学性能进行有效的分析。当前,有限元模态分析法已是轮毂设计的一个重要环节,因为模态仿真不仅计算准确度和精度较高,还可以提前预测出轮毂的动态性能,以便在设计初期阶段对结构进行修改、避免结构缺陷,节约了生产成本、缩短了产品开发周期。

根据它们的边界条件,模态分析可以分为两类:一类是完全无约束的,另一类则受到约束。这种分析方法通常会假定结构没有受到外部约束,从而使得它们保持原有的运动特性。自由模态多用于对比分析,一方面与结构常见外界激励的频率进行对比,预测整体或局部结构的动态性能;一方面还可应用振型叠加等原理分析在结构动态响应中起到最重要作用的振型及其阶次。约束模态分析,亦称为工作模态分析,是指通过模拟结构所受外界约束,提取结构在实际工况下的振动特点。在约束可模拟的情况下,约束模态分析更具有实用价值。

理论上,以计算机为基础的有限元模态法可以计算出任意边界条件下的模态参数,但对于不同工程结构模拟,其实际工作条件的难易程度差别很大,例如对飞机而言可利用自由模态对实际工况进行模拟,而对于车身,模拟其运行过程中结构的每一处约束就较为困难。实验模态分析法在获取结构的约束模态参数方面仍存在诸多不足,例如:理论基础的研究、实验测试的技术以及参数识别的技术等。因此,车身动态结构中常见以有限元模态法为分析方法的自由模态分析。

      1. 模型建立

模态分析旨在探索系统中的参数、参数与非参数之间的相互作用。它的基本思想是:把实际的数学概念抽象出来,并用它们来表示实际的参数。这种分析可以帮助我们更好地了解复杂的系统,并且能够更准确地预测它们的行为。根据达朗贝尔(D’Alembert)原理,对一个具有 N 个自由度的线性振动系统,其运动微分方程为:

           (3-1)

式中,

为质量矩阵,

为阻尼矩阵,

为刚度矩阵,

为作用力向量,

为位移向量,

为速度向量,

为加速度向量,t 为时间。模态分析的首要任务是求出系统的各阶模态参数,例如系统的固有频率、振型和模态刚度等,结构的模态参数是结构的固有特性,与外载荷无关,故将系统振动方程转化成齐次方程更有利于求解模态参数。另外一方面由于阻尼较小并且难以处理,因此不考虑阻尼的影响,因此系统方程可以简化为:

               (3-2)

可以通过这个方程求解系统的模态频率、振型和刚度,在 Radioss 求解器中有两种模态参数提取方式:分块 Lanczos 方法和 Subspace 子空间求解法。这两种方法都可以用于模型的多模态提取。相比于 Subspace 子空间求解法,分块子空间法对网格单元质量要求,计算机内存以及硬盘空间要求都适中,求解速度较快、精度高。下面简要描述在 Radioss 求解器中利用分块 Lanczos 方法求解步骤:

假设

,通过重新排序和简化分析可得:

                    (3-3)

      1. 分析结果

模态分析材料采用的为碳纤维:

表3-1 材料属性

轮毂材料

弹性模量(GPa)

密度(kg/m3)

泊松比

材料属性

碳纤维

2.1*105

7830

0.27

各项同性

由于前 6 阶模态是刚体模态,固有频率在103数量级,可以近似为零(如表 4.1 所示),这是由于在刚体模态中,轮毂只产生平动或转动,不会产生形变。在自由模态中,从第 7 阶模态开始为弹性体模态,是在评价结构的动态特性时的考察模态,图 4.3 所示轮毂自由模态第 7-12 阶固有频率和振型。

 

(a)第一阶模态分析                 (b)第二阶模态分析

 

(a)第三阶模态分析                 (b)第四阶模态分析

 

(a)第五阶模态分析                 (b)第六阶模态分析

图3-1轮毂模型的六阶模态分析(a)第一阶模态分析(a)第二阶模态分析(a)第三阶模态分析(a)第四阶模态分析(a)第五阶模态分析(a)第六阶模态分析

表3-2 轮毂的6阶变形

阶次

1

2

3

4

5

6

频率(Hz)

12.11

14.48

14.83

14.82

14.8

14.5

从图 4.3 中可以看出第 1 阶和第 2 阶模态的频率值几乎接近,振型也非常相似,不同之处在于振动的角度不同。第 4 和第 5 阶模态的频率值也很接近,两者的变形图形式类似,振动时轮毂同时向三个不同方向收缩。第 3 阶和第 6 阶的频率值相对于前后阶频率有较大不同,因此出现了与前几阶模态均不同的振型图,振动时轮辐沿着轴向上下振动,而车轮轮辋外形没有发生太多的改变,第 3 阶沿轴向向外振动,第 6 阶沿轴向向内振动。为更好地分析模态的振型,建立如图所示的坐标系。

    1. 汽车轮毂的受力分析

车轮由轮毂和轮毂构成,是汽车的重要承载结构,不仅传递了运动,更重要的是承受了汽车的所有载荷。地面对车轮力的传递是这样的,当车轮与地面接触时,车轮受到地面对它的支持力和汽车自身的重力,轮毂将这些力传递给轮毂,轮毂通过螺栓与半轴一端的凸缘配合连接,将力和力矩传递给安装在半轴上的纵向推力杆,以支撑着整个车辆。而在力传递过程中,轮毂起到了非常关键作用,所以应该对汽车轮毂进行力学分析的研究。 轮毂所受到的力则主要是通过轮毂内的局部胎压来实现的汽车轮毂的有限元分析

由于轮毂受力挤压会产生变形,所以轮毂的实际受力位置不再是沿着轮辋轴线方向了,而是与轮辋接触部位附近的一块圆弧曲面,所受的力的大小呈抛物线的形状,力会在接触部位向两边的圆弧方向急剧递减。所以轮毂的受力部位主要还是集中在与轮辋接触的那段圆弧曲面上,而该曲面的跨度主要取决于轮毂的扁平比和气压。本文在进行有限元分析时,轮毂径向载荷的施加是将载荷施加在轮辋的半个圆弧曲面上,并且将这个面载荷分布近似的看成是按椭圆线分布的。

    1. 本章小结

本章首先介绍了有限元的基本思想及计算步骤,然后弯曲疲劳试验的原理为理论基础,对轮毂的实际受力情况进行计算。由于轮毂受到的弯曲载荷不能直接加载到轮毂上去,所以这里构建了一个余弦函数,通过 ABAQUS 软件,成功实现了对轮毂函数载荷的加载。经过对轮辋的研究,我们得出:当它经历弯曲时,它的抗压能力相对较弱,因此很少会损坏。然而,当它与轮辋相互作用时,它的抗压能力就会变得非常强。特别地,当它与轮辐相互作用时,它的抗压能力就更强。为了延长轮毂的使用寿命,我们建议通过在螺栓孔中添加径向加固材料和增大轮毂的厚度,从而大幅改善其性能。

  1. 汽车轮毂轻质材料的轻量化设计
    1. 绪论

在近些年,随着国家对道路基础设施投入的不断增加,道路的行车状况得到了很大的改善,车辆行驶的速度较之前也有了一定的提高,但随之而来的道路交通事故发生率却也大大增加,究其事故原因很大一部分都与汽车车轮的性能或质量存在直接或间接的关系。有相关调查数据显示,在所有发生的交通事故中,有近三分之一都是由于“车轮一轴承一轮毂”组件的断裂或失效所造成的[70],而由于车轮材料的失效而导致的事故占了这其中很大的比例,因而很有必要对车轮结构进行研究,确保车轮结构的强度和刚度有一定的节余同时又不过分增加车轮重量,即在车轮结构的安全性和材料性能的充分发挥之间寻找一个恰当的平衡点。有研究表明,汽车车轮轮毂应用轻质材料铝合金、镁合金及碳纤维,在减轻车身重量的同时,还有助于提高车轮轮毂的强度和安全性、行驶稳定性,确保行车的安全。

    1. 轮毂结构尺寸优化
      1. 尺寸优化理论概述

尺寸优化(size optimization)是结构优化方法中最为成熟的一种优化手段,结构尺寸优化是在结构形状确定的情况下,通过调整主要参数,如板厚、梁截面尺寸等,以达到优化结构的目的。一般而言,尺寸优化的设计变量可以是结构的过渡圆角、板的厚度、梁杆的横截面积参数以及弹性单元的刚度等;约束条件单元应力约束、结点位移约束、整体应变能约束、整体加速度约束以及模态约束等;目标函数可以是质量、体积等,便于实现轻量化设计。在对结构进行尺寸优化时,结构的材料类型、几何外形及分布均未改变,主要变量为结构的截面尺寸,因此尺寸优化适用于结构形状。

1

(a)原始桁架结构          (b)尺寸优化后的最优桁架结构

图 4-1  尺寸优化设计简要模型

尺寸优化的目标函数可以采用结构的体积或者重量,也可以采用结构响应参数如综合应变能、位移、频率等。约束条件可以采用结构优化的体积比,也可以采用结构响应参数如应力、位移、频率等。本文采用轮毂单元的厚度 ti(i=1,2…n)为优化设计变量,重量为目标函数,应力和位移为约束条件,其优化的数学模型如式 5.1 所示。

          (4-1)

式中,n 为设计变量单元的总数,ti和 Ai分别为第 i 个单元的厚度和相应的面积,tmax和 tmin为第一个单元厚度的上下限值,W 为轮毂的总质量,ρ 为材料密度,δ 为应力约束,δmin和 δmax分别为应力约束上下限值,u 为位移约束,umin和 umax分别为位移约束上下限值。

图4-2 算法流程图

      1. 轻质材料轮毂尺寸优化

轮毂的轮辐和轮辋属于薄壁复杂零件,其壁厚是工程人员根据工程经验和材料属性给定的,并不是最佳壁厚,也不一定满足刚度强度要求。根据 GB/T348-1996 汽车轮辋规格的有关要求[72],壁厚一般在 4.5-10 mm 之间,假设本文研究的实验轮毂厚度为 5.5 mm,忽略它的异形结构,假设它的壁厚均匀。

本文使用的尺寸优化研究方法是结合实体单元和壳单元。尺寸优化选择的标准为:

①满足轮毂尺寸优化设计的基本条件;②优化的厚度值在满足优化部位的基础上能保证满足其他部位,即优化结果的厚度值可以推广到轮毂的其它部位,可以取代经验值所给的厚度。在三维软件 SolidWorks 中对轮毂的轮辋和轮辐进行壁厚的调整如图 5.3

 

(a)原轮毂模型             (b)优化后的轮毂模型

图4-3轮毂模型优化前后对比图(a)原轮毂模型 (b)优化后的轮毂模型

图 5.5 中,变化区域较大的壁厚位置是因为厚度增加到一定程度,轮辐根部结构发生了一定变化,所用的材料较多。对于原始模型的尺寸优化设计,轮毂的结构和外形并未发生本质变化,所以尺寸优化过程中并不能满足添加的应力约束,因此直接选用变形位移作为约束条件。

轮毂结构在载荷作用下,一般都会发生变形。根据原始钢制轮毂的受力情况,钢制轮毂结构的变形主要发生在轮辋区域,最大的变形量为 0.935 mm,位于背腔轮辋远

    1. 优化模型的模态分析

 

(a)第一阶模态分析                 (b)第二阶模态分析

 

(a)第三阶模态分析                 (b)第四阶模态分析

 

(a)第五阶模态分析                 (b)第六阶模态分析

图4-4轮毂模型的六阶模态分析(a)第一阶模态分析(a)第二阶模态分析(a)第三阶模态分析(a)第四阶模态分析(a)第五阶模态分析(a)第六阶模态分析

表4-1 轮毂的6阶变形

阶次

1

2

3

4

5

6

频率(Hz)

12.59

16.15

16.15

17.26

17.32

13.11

通过上文,得知三种材质轮毂的模态情况基本保持一致,第 1 阶与第 2 阶,第 4阶与第 5 阶模态的频率值几乎接近,振型也非常相似,只是振动的方向以及角度有所不同。第 3 阶和第 6 阶的频率值相对于前后阶频率有较大不同,因此出现了与前几阶模态均不同的振型图,振动时轮辐沿着轴向上下振动,第 3 阶沿轴向向外振动,第 6阶沿轴向向内振动。

在不改变约束的情况下,改变轮毂的结构和材料的属性,所得车轮各阶相应频率变化较大,这是因为保证轮毂的刚度和强度,对轮毂结构进行优化后改变轮毂结构造成的,镁合金轮毂的模态变化率较高。轮毂的轮辋和轮辐部分,其固有频率都处在一定的范围,还存在一定的优化空间,通过研究该部分的振动特性,尤其是对构件动力影响最大的低阶振型,可为后续轮毂的二次减重和优化选择最佳的结构方案提供理论支撑。

结论

轮毂在汽车中扮演着至关重要的角色,它不仅影响着汽车的安全性和驾驶舒适度,而且还是轻量化设计的核心,因此受到了广泛的关注。汽车轮毂的轻量化设计是汽车行业现代化和高速化发展的方向。为了节能降耗、绿色环保,必须对汽车轮毂进行轻量化设计。

(1)本文选择了碳纤维作为汽车轮毂的材料,利用丁三维设计软件SOILDWORKS进行汽车轮毂的造型设计,并结合了有限元分析ABAQUS技术对汽车轮毂进行结构分析、尺寸优化以及拓扑优化。在保证汽车轮毂质量的前提下,降低了生产成本,提高了生产效率。

(2) 经过有限元模拟,我们使用ABAQUS 进行了深入的研究,获取了关于特定类别的轮毂的强度数据,包括前 6级的固有频率,以及它们的相关振动特性。经过详细的研究,我们可以确定这种轮毂的模式是非常适用的,它可以很好地抵抗驾驶时的外力,从而防止出现共鸣现象。

 (3)汽车轮毂的优化设计,为了减轻汽车轮毂自身的重量,提供的优化设计模块对汽车轮毂的尺寸进行合理优化。通过采用参数化建模技术,我们可以有效地优化轮毂设计,从而大大减少建模和计算的时间。

通过引入有限元分析技术,可以有效地帮助设计师及时识别出可能出现的缺陷,从而有效地控制生成的零件,大大降低了性能测试的时间成本,大大缩短了研制的时间,从而极大地提升了汽车零部件的整体质量。

参考文献

  1. 陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报,2005,23(4):24-28。
  2. 欧阳帆.零部件轻量化是汽车轻量化的根本[J].制造材料与技术,2010,10(1):24-27.
  3. 智淑亚.汽车车身轻量化材料的应用及发展[A].南京:中国制造业信息化,2012,9。
  4. 苏利阳,王毅,陈茜,汝醒君.未来中国纯电动汽车的节能减排效益分析[J].气候变化研究进

展,2013,9(4):284-290.。

  1. 李忱钊,郭永进,朱平等。钢制车轮弯曲疲劳寿命的影响因素[J]. 机械设计与研究。

究,2011,27(2):56-63.

  1. Des Marais DJ, Strauss H, Summons RE, Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment[J]. Nature, 1992, 359: 605-609.
  2. Currey J. Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London. Series BJ. Biological Sciences, 1977, 196(1125): 443-463.
  3. Elices M, Plaza GR, Perez-Rigueiro J,The hidden link between supercontraction and mechanical behavior of spider silks[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011, 4(5): 658-669.
  4. Currey J D, Taylor J D. The mechanical behaviour of some molluscan hard tissues[J]. Proceedings of the Zoological Society of London, 2010, 173(3): 395-406.
  5. Sarikaya M, Aksay I A. Biomimetics. Design and Processing of Materials.   Biomimetics Design&Processing of Materials, 1995.
  6. Wang R Z, Suo Z, Evan A G. Deformation mechanisms in nacre[J]. Journal of Materials Research,2001, 16(9): 2485-2493.
  7. Lin A, Meyers MA. Growth and structure in abalone shell[J]. Materials Science&Engineering A,2005, 390(1-2): 27-41.
  8. Wada, Kozi. The Crystalline Structure on the Nacre of Pearl Oyster Shell[J]. Nihon-suisan-gakkai-shi,1958, 24(6-7): 422-427.
  9. Rim J E, Zavattieri P, Juster A, et al. Dimensional analysis and parametric studies for designing.artificial nacre[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011.
  10. Smith B L, Schaeffer T E, Viani M. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites}J}. Nature, 1999, 399(6738): 761-763.
  11. Sarikaya M, Gunnison K E, Yasrebi M. Mechanical Property-Microstructural Relationships in Abalone Shell[J]. Mrs Proceedings, 1989, 174: 1946-4274.
  12. Gao H. Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials[J]. International Journal of Fracture, 2006, 138(1-4): 101.
  13. Yourdkhani M, Pasini D, Barthelat F. Multiscale Mechanics and Optimization of Gastropod Shells[J].Journal of Bionic Engineering, 2011, 8(4): 357-368.
  14. Tran P, Ngo T D, Ghazlan A, et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings[J]. Composites Part B Engineering, 2017,108: 210-223 .
  15. Gilbert P U P A, Metzler R A, Zhou D. Gradual Ordering in Red Abalone Nacre[J]. Journal of the American Chemical Society, 2008, 130(51): 17519-17527.
  16. Gao H, Ji B, Jager I L, et al. Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature[J]. Proceedings of the National Academy of Sciences, 2003, 100(10): 5597-5600.
  17. Mathew Kuttolamadom,Joshua Jones, Laine Mears, et al. Life-Cycle Integration of
  18. Titanium Alloys into the Automotive Segment for Vehicle Light-Weighting. SAE Technical
  19. Paper 2012-01-0785, 2012.
  20. Trisha Montalbo, Richard Roth and Randolph Kirchain. Modeling Costs and Fuel Economy
  21. Benefits of Lightweighting Vehicle Closure Panels. SAE 2008-01-0370, 2008.
  22. Li Y, Lin Z, Jiang A, et a1.Use of high strength steel sheet for lightweight and
  23. crashworthy car body[J],Materials and Design,2003,24(3):177-182.
  24. Das, S., Life Cycle Energy and Environmental Assessment of Aluminum-Intensive
  25. Vehicle Design [J]International Journal of Life Cycle Assessment, 2011,16(3):268-282.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力学AI有限元

你的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值