算法
文章平均质量分 88
高能阿博特
在读博士生,正在学习
展开
-
广义模态控制
温馨提示:在阅读本文之前,读者最好具有一定的的相关知识,可以阅读笔者的另一篇博客中的第1节来了解。原创 2023-08-20 20:03:00 · 405 阅读 · 0 评论 -
非线性系统的线性化、线性系统及其解的形式(关于线性系统微分方程、拉氏变换、常微分方程的一些小思考)
因此,由(3–1)得到的通解(3–2–1)所表示的动态过程也被称为“,即式(3)等号右边为0、式(3–1)的情况。对比式(3)和式(3–1),不难发现,(3–1)是(3)将等号右边项置零得到的,即。上述分析表明:一个函数直接进行拉氏变换得到的复平面表达式,和其先进行泰勒展开后进行拉氏变换得到的复平面表达式,是相同的。将泰勒展开应用在函数线性化中时,只取线性化的第一项,后面的高阶项全部用高阶小量表示。容易看出,式(3–4)和式(3–2)具有相同的形式,因此同样可以得到通解(3–2–1)。原创 2023-08-08 17:36:25 · 3518 阅读 · 0 评论 -
广义(通用)卡尔曼-布什(Kalman-Bucy)滤波器详细推导过程(全网独家)
介绍了Kalman-Bucy滤波器的数学推导过程原创 2023-07-22 01:04:34 · 856 阅读 · 2 评论 -
阿克曼公式
简单介绍了阿克曼公式的计算方法。原创 2023-06-22 23:33:56 · 3960 阅读 · 0 评论 -
在标准Z变换下,连续系统的离散化计算方法
本文只介绍计算方法,并不涉及计算原理。原创 2023-06-05 21:35:11 · 1362 阅读 · 0 评论 -
状态转移矩阵计算方法及其离散化转换(含举例)
1. 状态转移矩阵的计算方法;2. 离散化系统的状态转移矩阵的计算方法原创 2023-06-05 20:46:33 · 10294 阅读 · 0 评论 -
simulink求解器选择的小tip
给出了simulink选择求解器的一种tip,与积分初值有关。原创 2022-10-28 16:21:28 · 1589 阅读 · 0 评论 -
扩张状态观测器简介
本文介绍了扩张状态观测器的相关内容。原创 2022-10-13 00:01:47 · 8012 阅读 · 2 评论 -
超螺旋滑模控制详细介绍(全网独家)
本文介绍了超螺旋滑模控制理论的基本内容,并进行了详尽推导。原创 2022-10-01 21:08:03 · 17511 阅读 · 78 评论 -
固定翼飞机姿态角Backstepping反步法控制
本文在固定翼飞机姿态角数学建模的基础上,给出了姿态角的Backstepping反步法控制算法及仿真结果。原创 2022-08-23 22:51:21 · 1902 阅读 · 10 评论 -
“Derivative of state ‘1‘ in block ‘X/Y/Integrator‘ at time 0.55 is not finite“类问题解决办法
Derivative of state '1' in block 'X/Y/Integrator' at time 0.55 is not finite.问题解决方法原创 2022-03-31 04:13:42 · 6704 阅读 · 1 评论 -
基于反步法backstepping的自适应控制简介
本文基于反步法backstepping控制算法简要讲述了自适应算法,附上了详尽的推导过程。原创 2022-03-26 19:37:45 · 11319 阅读 · 16 评论 -
matlab使用LMI对二阶系统进行H无穷控制
MATLAB使用LMI对二阶系统进行H无穷控制1. 二阶系统建立2. 二阶系统实现3. MATLAB代码本文需要对LMI理论和H无穷控制理论具有一定的了解。1. 二阶系统建立建立一个二阶系统A=[12−23]A = \left[\begin{matrix}1 & 2 \\-2 & 3\end{matrix}\right]A=[1−223]B1=[10],B2=[01]B_1 = \left[\begin{matrix}1 \\0\end{matrix}原创 2021-11-23 03:34:38 · 15275 阅读 · 3 评论 -
A*搜索算法(A-Star Search)简介及保姆级代码解读
A*搜索算法简介及保姆级代码解读1. A*算法简单介绍1.1 A*算法理论基础1.1.1 节点计算1.1.2 由计算得出的小结论1.2 算法逻辑结构2. 代码解析2.1 引入地图2.2 预处理2.3 定义父节点`parent`2.4 主循环1. A*算法简单介绍A*算法是一种路径规划算法,和传统的Dijkstra算法有所不同,该算法有选择地进行节点搜索,因此比Dijkstra算法更快、搜索的点更少。阅读本文,不需要掌握Dijkstra算法的知识,相关的知识会在介绍A*算法时一并提到,请放心食用本文。原创 2021-11-16 19:05:16 · 14086 阅读 · 1 评论 -
粒子群算法PSO简介
粒子群算法PSO1. 粒子群算法2. 算法流程2.1 公式解读2.2 初始化2.3 计算流程2.4 示例1. 粒子群算法粒子群算法(Particle Swarm Optimization)是一种优化算法,其主要思想受到自然界鸟群飞行的启发。对一群鸟群来说,其群体觅食行为呈现一定规律:单只鸟并不知道食物地在哪里,但可以通过飞行中对食物的远离程度来纠正自己的飞行。体现在单只鸟上可能并不明显,但当鸟群数量多起来之后,就可以利用鸟群数量弥补单只鸟搜索能力的不足,逐渐逼近最优值。而在这个过程中,整个系统还需要满原创 2021-11-10 03:05:26 · 464 阅读 · 0 评论