非线性系统的线性化、线性系统及其解的形式(关于线性系统微分方程、拉氏变换、常微分方程的一些小思考)

1. 线性化的一般方法

一般地,非线性系统的线性化,借助的是泰勒展开这一数学工具。在某一个点附近进行展开,即可以把一个函数写成多项式的形式。某函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0附近泰勒展开的一般公式为:
f ( x ) = ∑ k = 0 ∞ 1 k ! ( x − x 0 ) k f ( k ) ( x 0 ) (1) f(x) = \sum _{k=0}^\infty \frac{1}{k!} \left( x - x_0 \right) ^k f^{(k)} \left( x_0 \right) \tag{1} f(x)=k=0k!1(xx0)kf(k)(x0)(1)将泰勒展开应用在函数线性化中时,只取线性化的第一项,后面的高阶项全部用高阶小量表示。此时式(1)可以写为:
f ( x ) = f ( x 0 ) + ( x − x 0 ) f ′ ( x 0 ) + o ( x − x 0 ) (2) f(x) = f \left( x_0 \right) + \left( x - x_0 \right) f' \left( x_0 \right) + o \left( x - x_0 \right) \tag{2} f(x)=f(x0)+(xx0)f(x0)+o(xx0)(2)其中 o ( x − x 0 ) o \left( x - x_0 \right) o(xx0)表示高阶小量。

所谓线性化,即把原来的函数用线性化的方式表示,故上式只能表示为:
f ( x ) ≈ f ( x 0 ) + ( x − x 0 ) f ′ ( x 0 ) f(x) \approx f \left( x_0 \right) + \left( x - x_0 \right) f' \left( x_0 \right) f(x)f(x0)+(xx0)f(x0)显然,这种表示方式忽略了高阶小量,造成了误差。因此可以说:泰勒展开进行线性化的过程中,高阶小量可以视为该过程中的误差

2. 线性化系统及其解

一个系统被线性化后,就可以用如下的线性常微分方程表示:
a n x ( n ) + a n − 1 x ( n − 1 ) + ⋯ + a 1 x ˙ + a 0 x = b m u ( n ) + b m − 1 u ( m − 1 ) + ⋯ + b 1 u ˙ + b 0 u (3) a_n x^{(n)} + a_{n-1} x^{(n-1)} + \cdots + a_1 \dot x + a_0 x = b_m u^{(n)} + b_{m-1} u^{(m-1)} + \cdots + b_1 \dot u + b_0 u \tag{3} anx(n)+an1x(n1)++a1x˙+a0x=bmu(n)+bm1u(m1)++b1u˙+b0u(3)其中 u u u为系统的控制量, x x x为系统的输出量。这里的“线性”指的是系统中的各微分项独立成项,即不存在 x ˙ x ¨ \dot x \ddot x x˙x¨此类项;“常”指的是常系数,即系数 a i , b j a_i, b_j ai,bj为常数,不随时间改变。

式(3)是典型的线性常微分方程,其解可以分为通解特解两部分。根据高等数学的知识,通解是将式(3)右端置0获得:
a n x ( n ) + a n − 1 x ( n − 1 ) + ⋯ + a 1 x ˙ + a 0 x = 0 (3–1) a_n x^{(n)} + a_{n-1} x^{(n-1)} + \cdots + a_1 \dot x + a_0 x = 0 \tag{3--1} anx(n)+an1x(n1)++a1x˙+a0x=0(3–1)而特解则有一套固定的求解方案,此处不加赘述,在高等数学里都有提及。

对于式(3–1),一般地,求解时,给出2种方法:
(1) 高等数学的解法是,根据式(3–1)中求导的阶次,写出其特征方程
a n p n + a n − 1 p n − 1 + ⋯ + a 1 p + a 0 = 0 (3–2) a_n p^n + a_{n-1} p^{n-1} + \cdots + a_1 p + a_0 = 0 \tag{3--2} anpn+an1pn1++a1p+a0=0(3–2)该方程为 n n n阶方程,故有 n n n个解 p i ( i = 1 , 2 , ⋯   , n ) p_i (i = 1, 2, \cdots, n) pi(i=1,2,,n)。根据得到的 n n n个解,直接写出其通解:
x ( t ) = ∑ i = 1 n C i e p i t (3–2–1) x(t) = \sum _{i=1}^n C_i e^{p_i t} \tag{3--2--1} x(t)=i=1nCiepit(3–2–1)其中 C i C_i Ci为常数,由初始条件确定。
(2) 拉氏变换解法。学习自动控制基本理论后,可以对式(3–1)进行拉氏变换
a n s n X ( s ) + a n − 1 s n − 1 X ( s ) + ⋯ + a 1 s X ( s ) + a 0 X ( s ) = 0 ⟹ ( a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 ) X ( s ) = 0 (3–3) a_n s^n X({\rm s}) + a_{n-1} s^{n-1} X( {\rm s}) + \cdots + a_1 s X({\rm s}) + a_0 X({\rm s}) = 0 \\ \Longrightarrow \left( a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 \right) X({\rm s}) = 0 \tag{3--3} ansnX(s)+an1sn1X(s)++a1sX(s)+a0X(s)=0(ansn+an1sn1++a1s+a0)X(s)=0(3–3)为使式(3–3)成立,显然有
a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 ≡ 0 (3–4) a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 \equiv 0 \tag{3--4} ansn+an1sn1++a1s+a00(3–4)容易看出,式(3–4)和式(3–2)具有相同的形式,因此同样可以得到通解(3–2–1)。

以上两种方法解出的都是通解,即式(3)等号右边为0、式(3–1)的情况。对比式(3)和式(3–1),不难发现,(3–1)是(3)将等号右边项置零得到的,即系统中不存在控制量 u u u时得到的。式(3–1)不含有 u u u项,因此系统中是没有外界作用的,整个系统完全是自发地、自治地在运动。因此,由(3–1)得到的通解(3–2–1)所表示的动态过程也被称为“自由运动”。

应当注意的是,“自由运动”指的并不是完全没有外界作用,而是在 t = 0 t=0 t=0时刻,给系统施加一个外界作用后立即将其移去,而系统在该作用下,从原本的静止状态变成动态过程。而在 t > 0 t >0 t>0的过程中, u u u不再以任何形式作用于系统,故整个系统除了在 t = 0 t=0 t=0时刻被 u u u激发外,其余时间都在自发地运动。显然, t = 0 t=0 t=0时刻施加的 u u u是一个脉冲信号。

相应地,式(3–1–1)中得到的每一个分量 C i e p i t C_i e^{p_i t} Ciepit,都是组成自由运动的部分,又被称为模态。关于模态的概念可以参考模态反馈控制

除了通解之外,式(3)还存在特解,也就是等号右边 u u u的多项式不可忽视时得到的解。显然,这些解是系统中存在外界作用 u u u时的动态表现,是被持续的 u u u引发的运动,故称为“强迫运动”。

那么,式(3)的解,可以用如下方式表示:
x ( t ) = x 通 ( t ) + x 特 ( t ) = x 自 ( t ) + x 强 ( t ) x(t) = x_通(t) + x_特(t) = x_自(t) + x_强(t) x(t)=x(t)+x(t)=x(t)+x(t)即:系统的运动由自由运动和强迫运动组成。

3. 非线性化系统泰勒展开与拉氏变换求解的关系

我们知道,一个非线性系统 f ( x ) f(x) f(x)可以泰勒展开为式(1)的形式:
f ( x ) = ∑ k = 0 ∞ 1 k ! ( x − x 0 ) k f ( k ) ( x 0 ) (1) f(x) = \sum _{k=0}^\infty \frac{1}{k!} \left( x - x_0 \right) ^k f^{(k)} \left( x_0 \right) \tag{1} f(x)=k=0k!1(xx0)kf(k)(x0)(1)着重指出:上式中, x x x为自变量,而 x 0 , f ( k ) ( x 0 ) x_0, f^{(k)} \left( x_0 \right) x0,f(k)(x0)为常数。

不妨将上式进行拉氏变换。在进行变换之前,需要用到下述拉氏变换的特性:
若 L { f ( t ) } = F ( s ) , 则 L { f ( t − τ ) } = e − s τ L { f ( t ) } = e − s τ F ( s ) 若\quad \mathscr{L} \left\{ f(t) \right\} = F({\rm s}),\qquad 则\quad \mathscr{L} \left\{ f(t - \tau) \right\} = e^{-{\rm s} \tau} \mathscr{L} \left\{ f(t) \right\} = e^{-{\rm s} \tau} F ({\rm s}) L{f(t)}=F(s)L{f(tτ)}=esτL{f(t)}=esτF(s)上述性质被称为时移性质。

再引入幂次函数的拉氏变换:
L { t n } = n ! s n + 1 \mathscr{L} \left\{ t^n \right\} = \frac{n!}{ s^{n+1} } L{tn}=sn+1n!

那么,式(1)的拉氏变换为:
L { f ( x ) } = L { ∑ k = 0 ∞ 1 k ! ( x − x 0 ) k f ( k ) ( x 0 ) } = ∑ k = 0 ∞ L { 1 k ! ( x − x 0 ) k f ( k ) ( x 0 ) } = ∑ k = 0 ∞ 1 k ! f ( k ) ( x 0 ) L { ( x − x 0 ) k } = ∑ k = 0 ∞ 1 k ! f ( k ) ( x 0 ) L { x k } e − x 0 s = ∑ k = 0 ∞ 1 k ! f ( k ) ( x 0 ) k ! s k + 1 e − x 0 s = e − x 0 s ∑ k = 0 ∞ 1 k ! f ( k ) ( x 0 ) k ! s k + 1 = e − x 0 s [ f ( x 0 ) 1 s + f ′ ( x 0 ) 1 s 2 + 1 2 f ′ ′ ( x 0 ) 2 s 3 + ⋯   ] (4) \begin{aligned} \mathscr{L} \left\{ f(x) \right\} &= \mathscr{L} \left\{ \sum _{k=0}^\infty \frac{1}{k!} \left( x - x_0 \right) ^k f^{(k)} \left( x_0 \right) \right\} \\ &= \sum _{k=0}^\infty \mathscr{L} \left\{ \frac{1}{k!} \left( x - x_0 \right) ^k f^{(k)} \left( x_0 \right) \right\} \\ &= \sum _{k=0}^\infty \frac{1}{k!} f^{(k)} \left( x_0 \right) \mathscr{L} \left\{ \left( x - x_0 \right) ^k \right\} \\ &= \sum _{k=0}^\infty \frac{1}{k!} f^{(k)} \left( x_0 \right) \mathscr{L} \left\{ x^k \right\} e^{-x_0 {\rm s}} \\ &= \sum _{k=0}^\infty \frac{1}{k!} f^{(k)} \left( x_0 \right) \frac{k!}{ s^{k+1} } e^{-x_0 {\rm s}} \\ &= e^{-x_0 {\rm s}} \sum _{k=0}^\infty \frac{1}{k!} f^{(k)} \left( x_0 \right) \frac{k!}{ s^{k+1} } \\ &= e^{-x_0 {\rm s}} \left[ f \left( x_0 \right) \frac{1}{s} + f' \left( x_0 \right) \frac{1}{s^2} + \frac{1}{2} f'' \left( x_0 \right) \frac{2}{s^3} + \cdots \right] \end{aligned} \tag{4} L{f(x)}=L{k=0k!1(xx0)kf(k)(x0)}=k=0L{k!1(xx0)kf(k)(x0)}=k=0k!1f(k)(x0)L{(xx0)k}=k=0k!1f(k)(x0)L{xk}ex0s=k=0k!1f(k)(x0)sk+1k!ex0s=ex0sk=0k!1f(k)(x0)sk+1k!=ex0s[f(x0)s1+f(x0)s21+21f′′(x0)s32+](4)注意到有一项 e − x 0 s e^{-x_0 {\rm s}} ex0s,将其泰勒展开有:
e x = 1 + x + 1 2 x 2 + ⋯ = ∑ i = 0 ∞ 1 i ! x i ⟹ e − x 0 s = 1 − x 0 s + 1 2 x 0 2 s 2 + ⋯ = ∑ i = 0 ∞ 1 i ! ( − x 0 s ) i e^x = 1 + x + \frac{1}{2} x^2 + \cdots = \sum_{i=0}^\infty \frac{1}{i!} x^i \Longrightarrow \\ e^{-x_0 {\rm s}} = 1 - x_0 s + \frac{1}{2} x_0^2 s^2 + \cdots = \sum_{i=0}^\infty \frac{1}{i!} \left( -x_0 s \right)^i ex=1+x+21x2+=i=0i!1xiex0s=1x0s+21x02s2+=i=0i!1(x0s)i由此得到
L { f ( x ) } = e − x 0 s ∑ k = 0 ∞ 1 k ! f ( k ) ( x 0 ) k ! s k + 1 = ∑ i = 0 ∞ 1 i ! ( − x 0 s ) i ⋅ ∑ k = 0 ∞ 1 k ! f ( k ) ( x 0 ) k ! s k + 1 (5) \mathscr{L} \left\{ f(x) \right\} = e^{-x_0 {\rm s}} \sum _{k=0}^\infty \frac{1}{k!} f^{(k)} \left( x_0 \right) \frac{k!}{ s^{k+1} } = \sum_{i=0}^\infty \frac{1}{i!} \left( -x_0 s \right)^i \cdot \sum _{k=0}^\infty \frac{1}{k!} f^{(k)} \left( x_0 \right) \frac{k!}{ s^{k+1} } \tag{5} L{f(x)}=ex0sk=0k!1f(k)(x0)sk+1k!=i=0i!1(x0s)ik=0k!1f(k)(x0)sk+1k!(5)

举例:原函数为:
f ( t ) = ( t − 3 ) 2 = t 2 − 6 t + 9 f(t) = (t-3)^2=t^2-6t+9 f(t)=(t3)2=t26t+9(1) 如果用普通的拉氏变换求解,有:
L { f ( t ) } = L { t 2 − 6 t + 9 } = 2 s 3 − 6 s 2 + 9 s = 9 s 2 − 6 s + 2 s 3 (6–1) \mathscr{L} \left\{ f(t) \right\} = \mathscr{L} \left\{ t^2-6t+9 \right\} = \frac{2}{s^3} - \frac{6}{s^2} + \frac{9}{s} = \frac{9s^2 - 6s + 2}{s^3} \tag{6--1} L{f(t)}=L{t26t+9}=s32s26+s9=s39s26s+2(6–1)(2) 而若根据时移性质,将 f ( t ) = ( t − 3 ) 2 f(t)=(t-3)^2 f(t)=(t3)2看成是 g ( t ) = t 2 g(t) = t^2 g(t)=t2的时移得来,则根据时移性质:
L { f ( t ) } = L { ( t − 3 ) 2 } = e − 3 s L { t 2 } = e − 3 s 2 s 3 (6–2) \mathscr{L} \left\{ f(t) \right\} = \mathscr{L} \left\{ (t-3)^2 \right\} = e^{-3 {\rm s}} \mathscr{L} \left\{ t^2 \right\} = e^{-3 {\rm s}} \frac{2}{s^3} \tag{6--2} L{f(t)}=L{(t3)2}=e3sL{t2}=e3ss32(6–2)则式(6–1)和式(6–2)应当相等:
9 s 2 − 6 s + 2 s 3 = 2 e − 3 s s 3 (6–3) \frac{9s^2 - 6s + 2}{s^3} = \frac{2 e^{-3 {\rm s}} }{s^3} \tag{6--3} s39s26s+2=s32e3s(6–3)将右侧的 2 e − 3 s 2e^{-3 {\rm s}} 2e3s泰勒展开:
2 e − 3 s = 2 ∑ i = 0 ∞ 1 i ! ( − 3 s ) i = 2 ( 1 − 3 s + 9 s 2 2 + o ( s 3 ) ) 2e^{-3 {\rm s}} = 2 \sum_{i=0}^\infty \frac{1}{i!} \left( -3 s \right)^i = 2 \left( 1 - 3s + \frac{9s^2}{2} + o \left( s^3 \right) \right) 2e3s=2i=0i!1(3s)i=2(13s+29s2+o(s3))其中 o ( s 3 ) o \left( s^3 \right) o(s3)为高阶小量。展开括号可以看出,即为式(6–3)等号左边的分子。故(6–3)成立。

上述分析表明:一个函数直接进行拉氏变换得到的复平面表达式,和其先进行泰勒展开后进行拉氏变换得到的复平面表达式,是相同的。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值