滑模控制在四旋翼上的应用举例(内含公式手推、simulink框图连接、代码编写)

本文通过Zongcheng Ma等人论文的实例,详细阐述了如何在四旋翼上应用滑模控制,包括数学建模、姿态与高度控制器设计、仿真过程及结论。着重介绍了自适应控制思想在浮力和质量变化环境下的应用,以及控制器如何确保飞行器稳定穿越水面和水下区域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文以Zongcheng Ma, Jinfu Feng, Jian Yang的论文《Research on vertical air-water trans-media control of Hybrid Unmanned Aerial Underwater Vehicles based on adaptive sliding mode dynamical sruface control》这篇文章为例,将文章中的结果进行部分复现,展示应用在四旋翼上的滑模控制。具体算法实施过程中可能会用到一部分自适应思想,但不影响理解,也欢迎大家参考笔者关于自适应的文章基于反步法backstepping的自适应控制简介,进一步了解自适应的思想。

1. 论文背景

该论文建立了如下场景:一四旋翼飞行器从固定高度开始下降,穿越水面,并进入到水下一定位置的过程。在入水过程中四旋翼受力复杂,因此需要较好的控制律进行控制。

本文只对高度通道 z z z和姿态通道 φ , θ , ψ \varphi, \theta, \psi φ,θ,ψ设计控制律,目的是在复现该论文过程中,更好地体会滑模控制的思想。由于四旋翼各个通道的耦合性,姿态控制需要得到较好结果后才能进行高度控制,因此在实际应用中往往把姿态控制当做内环,位置控制作为外环,设计复合控制器或级联控制器,这也是本文针对姿态控制和高度通知均设计控制律的原因。

2. 数学建模

设各变量为
η 1 = [ x y z ] T η 2 = [ φ θ ψ ] T V = [ u v w ] T ω = [ p q r ] T \begin{aligned} \eta _1 &= \left[ \begin{matrix} x & y & z \end{matrix} \right]^T \\ \eta_2 &= \left[ \begin{matrix} \varphi & \theta & \psi \end{matrix} \right]^T \\ V &= \left[ \begin{matrix} u & v & w \end{matrix} \right]^T \\ \omega &= \left[ \begin{matrix} p & q & r \end{matrix} \right]^T \end{aligned} η1η2Vω=[xyz]T=[φθψ]T=[uvw]T=[pqr]T其中 η 1 , η 2 \eta_1, \eta_2 η1,η2地球坐标系下的物理量, V , ω V, \omega V,ω机体坐标系下的物理量。(关于地球坐标系和机体坐标系可以参考文章Backstepping反步法控制四旋翼无人机(一))。

列出欧拉方程
{ m η ¨ 1 = F J ω ˙ + ω × J ω = M \begin{cases} m \ddot \eta _1 = F \\ J \dot \omega + \omega \times J \omega = M \end{cases} {mη¨1=FJω˙+ω×Jω=M
对于入水过程,该论文设计了一个临界区间 H H H,当无人机高度位于区间内时,作用于其上的浮力 f ( z ) f(z) f(z)、拉力系数 C 0 ( z ) C_0(z) C0(z)、总质量(包括机身质量和附加质量) m i ( z ) m_i (z) mi(z)、总转动惯量 J i ( z ) J_i(z) Ji(z)、均拥有不同形式:
f ( z ) = { 0 , z > H 2 ( H 2 − z ) m 0 g , − H 2 ≤ z ≤ H 2 m 0 g , z < − H 2 C 0 ( z ) = { 0 , z > H 2 ( H 2 − z ) c 0 , − H 2 ≤ z ≤ H 2 c 0 , z < − H 2 m i ( z ) = { m 0 , z > H 2 ( H 2 − z ) ( m 0 + λ i i ) , − H 2 ≤ z ≤ H 2 m 0 + λ i i , z < − H 2 J i ( z ) = { J i i , z > H 2 ( H 2 − z ) ( J i i + λ i i ) , − H 2 ≤ z ≤ H 2 J i i + λ i i , z < − H 2 \begin{aligned} f(z) = \begin{cases} 0, \quad z > \frac{H}{2} \\ \left( \frac{H}{2} - z \right) m_0 g, \quad - \frac{H}{2} \leq z \leq \frac{H}{2} \\ m_0 g, \quad z < - \frac{H}{2} \end{cases}\\ C_0(z) = \begin{cases} 0, \quad z > \frac{H}{2} \\ \left( \frac{H}{2} - z \right) c_0, \quad - \frac{H}{2} \leq z \leq \frac{H}{2} \\ c_0, \quad z < - \frac{H}{2} \end{cases} \\ m_i(z) = \begin{cases} m_0, \quad z > \frac{H}{2} \\ \left( \frac{H}{2} - z \right) \left( m_0 + \lambda_{ii} \right), \quad - \frac{H}{2} \leq z \leq \frac{H}{2} \\ m_0 + \lambda_{ii}, \quad z < - \frac{H}{2} \end{cases} \end{aligned}\\ J_i(z) = \begin{cases} J_{ii}, \quad z > \frac{H}{2} \\ \left( \frac{H}{2} - z \right) \left( J_{ii} + \lambda_{ii} \right), \quad - \frac{H}{2} \leq z \leq \frac{H}{2} \\ J_{ii} + \lambda_{ii}, \quad z < - \frac{H}{2} \end{cases} f(z)=0,z>2H(2Hz)m0g,2Hz2Hm0g,z<2HC0(z)=0,z>2H(2Hz)c0,2Hz2Hc0,z<2Hmi(z)=m0,z>2H(2Hz)(m0+λii),2Hz2Hm0+λii,z<2HJi(z)=Jii,z>2H(2Hz)(Jii+λii),2Hz2HJii+λii,z<2H

那么总的运动公式可以表示为
{ m 3 z ¨ 1 = U 1 cos ⁡ φ cos ⁡ θ − m 0 g + f ( z ) − C 0 z ˙ + d f + d k + d l J η ¨ 2 = Γ − C η ˙ 2 + d Γ (0) \begin{cases} m_3 \ddot z _1 = U_1 \cos \varphi \cos \theta - m_0 g + f(z) - C_0 \dot z + d_f + d_k + d_l \\ J \ddot \eta_2 = \Gamma - C \dot \eta_2 + d_{\Gamma} \tag{0} \end{cases} {m3z¨1=U1cosφcosθm0g+f(z)C0z˙+df+dk+dlJη¨2=ΓCη˙2+dΓ(0)其中:
m 3 = m 0 + Δ m_3 = m_0 + \Delta m3=m0+Δ,第二项 Δ \Delta Δ附加质量和未建模的干扰项的和
Γ = [ U 2 U 3 U 4 ] T \Gamma = \left[ \begin{matrix} U_2 & U_3 & U4 \end{matrix} \right] ^ T Γ=[U2U3U4]T控制向量
C = l × d i a g ( K p , M q , N r ) C = l \times diag \left(K_p, M_q, N_r \right) C=l×diag(Kp,Mq,Nr)科里奥利力
d f , d k , d Γ d_f, d_k, d_\Gamma df,dk,dΓ分别为浮力线性化的误差阻力线性化的误差外部干扰

3. 姿态控制器设计

设跟踪误差为
e η 2 = η 2 − η 2 d = [ φ θ ψ ] − [ φ d θ d ψ d ] \begin{aligned} e_{\eta_2} &= \eta_2 - \eta_{2d} \\ &= \left[ \begin{matrix} \varphi \\ \theta \\ \psi \end{matrix} \right] - \left[ \begin{matrix} \varphi_d \\ \theta_d \\ \psi_d \end{matrix} \right] \end{aligned} eη2=η2η2d=φθψφdθdψd求二阶导
e ¨ η 2 = η ¨ 2 − η ¨ 2 d = J − 1 ( Γ − C η ˙ 2 + d Γ ) − η ¨ 2 d \ddot e_{\eta_2} = \ddot \eta_2 - \ddot \eta_{2d} = J^{-1} \left( \Gamma - C \dot \eta_2 + d_\Gamma \right) - \ddot \eta_{2d} e¨η2=η¨2η¨2d=J1(ΓCη˙2+dΓ)η¨2d
设计滑模面
s 1 = e ˙ η 2 + λ 1 e η 2 (1) s_1 = \dot e_{\eta_2} + \lambda_1 e_{\eta_2} \tag{1} s1=e˙η2+λ1eη2(1)此时如果把控制量设计
{ Γ = J ^ Γ ˉ + C η ˙ 2 − d ^ Γ Γ ˉ = η ¨ 2 d − λ 1 e ˙ η 2 − c 1 s 1 (3) \begin{cases} \Gamma = \hat J \bar \Gamma + C \dot \eta_2 - \hat d_\Gamma \\ \bar \Gamma = \ddot \eta_{2d} - \lambda_1 \dot e_{\eta_2} - c_1 s_1 \tag{3} \end{cases} {Γ=J^Γˉ+Cη˙2d^ΓΓˉ=η¨2dλ1e˙η2c1s1(3)亦即
{ Γ = J ^ Γ ˉ + C η ˙ 2 − d ^ Γ λ 1 e ˙ η 2 = η ¨ 2 d − c 1 s 1 − Γ ˉ (4) \begin{cases} \Gamma = \hat J \bar \Gamma + C \dot \eta_2 - \hat d_\Gamma \\ \lambda_1 \dot e_{\eta_2} = \ddot \eta_{2d} - c_1 s_1 - \bar \Gamma \tag{4} \end{cases} {Γ=J^Γˉ+Cη˙2d^Γλ1e˙η2=η¨2dc1s1Γˉ(4)
则对(1)求导,并代入(4)有
s ˙ 1 = e ¨ η 2 + λ 1 e ˙ η 2 = J − 1 ( Γ − C η ˙ 2 + d Γ ) − η ¨ 2 d + λ 1 e ˙ η 2 = J − 1 ( Γ − C η ˙ 2 + d Γ ) − η ¨ 2 d + η ¨ 2 d − c 1 s 1 − Γ ˉ = J − 1 [ ( J ^ Γ ˉ + C η ˙ 2 − d ^ Γ ) − C η ˙ 2 + d Γ ] − c 1 s 1 − Γ ˉ = J − 1 ( J ^ Γ ˉ − d ^ Γ + d Γ ) − c 1 s 1 − Γ ˉ (5) \begin{aligned} \dot s_1 &= \ddot e_{\eta_2} + \lambda_1 \dot e_{\eta_2} \\ &= J^{-1} \left( \Gamma - C \dot \eta_2 + d_\Gamma \right) - \ddot \eta_{2d} + \lambda_1 \dot e_{\eta_2} \\ &= J^{-1} \left( \Gamma - C \dot \eta_2 + d_\Gamma \right) - \ddot \eta_{2d} + \ddot \eta_{2d} - c_1 s_1 - \bar \Gamma \\ &= J^{-1} \left[ \left( \hat J \bar \Gamma + C \dot \eta_2 - \hat d_\Gamma \right) - C \dot \eta_2 + d_\Gamma \right] - c_1 s_1 - \bar \Gamma \\ &= J^{-1} \left( \hat J \bar \Gamma - \hat d_\Gamma + d_\Gamma \right) - c_1 s_1 - \bar \Gamma \tag{5} \end{aligned} s˙1=e¨η2+λ1e˙η2=J1(ΓCη˙2+dΓ)η¨2d+λ1e˙η2=J1(ΓCη˙2+dΓ)η¨2d+η¨2dc1s1Γˉ=J1[(J^Γˉ+Cη˙2d^Γ)Cη˙2+dΓ]c1s1Γˉ=J1(J^Γˉd^Γ+dΓ)c1s1Γˉ(5)
下面设计自适应律
{ d ^ ˙ Γ = γ 1 s 1 J ^ ˙ = − γ 2 Γ ˉ s 1 T (6) \begin{cases} \dot {\hat d}_\Gamma = \gamma_1 s_1 \\ \dot {\hat J} = - \gamma_2 \bar \Gamma s_1^T \tag{6} \end{cases} {d^˙Γ=γ1s1J^˙=γ2Γˉs1T(6)并设计李雅普诺夫函数为以下形式
V 1 = 1 2 s 1 T s 1 + 1 2 γ 1 d ~ Γ T J − 1 d ~ Γ + 1 2 γ 2 t r ( J ~ T J − 1 J ~ ) (7) V_1 = \frac{1}{2}s_1^Ts_1 + \frac{1}{2\gamma_1} \tilde d_\Gamma^T J^{-1} \tilde d_\Gamma + \frac{1}{2\gamma_2} tr \left( \tilde J^T J^{-1} \tilde J \right) \tag{7} V1=21s1Ts1+2γ11d~ΓTJ1d~Γ+2γ21tr(J~TJ1J~)(7)其中
d ~ Γ = d Γ − d ^ Γ , J ~ = J − J ^ (8) \tilde d_\Gamma = d_\Gamma - \hat d_\Gamma, \quad \tilde J = J - \hat J \tag{8} d~Γ=dΓd^Γ,J~=JJ^(8)对李雅普诺夫函数求导:
V ˙ 1 = s 1 T s ˙ 1 + 1 γ 1 d ~ Γ T J − 1 d ~ ˙ Γ + 1 γ 2 t r ( J ~ T J − 1 J ~ ˙ ) (9) \dot V_1 = s_1^T \dot s_1 + \frac{1}{\gamma_1} \tilde d_\Gamma ^T J^{-1} \dot {\tilde d}_\Gamma + \frac{1}{\gamma_2} tr \left( \tilde J^T J^{-1} \dot {\tilde J} \right) \tag{9} V˙1=s1Ts˙1+γ11d~ΓTJ1d~˙Γ+γ21tr(J~TJ1J~˙)(9) d Γ d_\Gamma dΓ J J J变化缓慢,那么由(8)
d ~ Γ ˙ = d ˙ Γ − d ^ ˙ Γ = − d ^ ˙ Γ J ~ ˙ = J ˙ − J ^ ˙ = − J ^ ˙ (10) \begin{aligned} \dot {\tilde d_\Gamma} &= \dot d_\Gamma - \dot {\hat d}_\Gamma = - \dot {\hat d}_\Gamma \\ \dot {\tilde J} &= \dot J - \dot {\hat J} = - \dot {\hat J} \tag{10} \end{aligned} d~Γ˙J~˙=d˙Γd^˙Γ=d^˙Γ=J˙J^˙=J^˙(10)把(10)代入(9),可得到下式(11)
V ˙ 1 = s 1 T s ˙ 1 + 1 γ 1 d ~ Γ T J − 1 d ~ ˙ Γ + 1 γ 2 t r ( J ~ T J − 1 J ~ ˙ ) = s 1 T s ˙ 1 − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) = s 1 T [ J − 1 ( J ^ Γ ˉ − d ^ Γ + d Γ ) − c 1 s 1 − Γ ˉ ] − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) = − c 1 s 1 T s 1 + s 1 T J − 1 J ^ Γ ˉ + ( − s 1 T J − 1 d ^ Γ + s 1 T J − 1 d Γ ) − s 1 T Γ ˉ − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) = − c 1 s 1 T s 1 + s 1 T J − 1 J ^ Γ ˉ + s 1 T J − 1 d ~ Γ − s 1 T Γ ˉ − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) = − c 1 s 1 T s 1 + s 1 T J − 1 J ^ Γ ˉ + s 1 T J − 1 d ~ Γ − ( s 1 T J − 1 J Γ ˉ ) − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) = − c 1 s 1 T s 1 + s 1 T J − 1 J ^ Γ ˉ − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) − s 1 T J − 1 ( J − J ^ ) Γ ˉ = − c 1 s 1 T s 1 + s 1 T J − 1 J ^ Γ ˉ − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) − s 1 T J − 1 J ~ Γ ˉ \begin{aligned} \dot V_1 &= s_1^T \dot s_1 + \frac{1}{\gamma_1} \tilde d_\Gamma ^T J^{-1} \dot {\tilde d}_\Gamma + \frac{1}{\gamma_2} tr \left( \tilde J^T J^{-1} \dot {\tilde J} \right) \\ &= s_1^T \dot s_1 - \frac{1}{\gamma_1} \tilde d_\Gamma ^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2} tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) \\ &= s_1^T \left[ J^{-1} \left( \hat J \bar \Gamma - \hat d_\Gamma + d_\Gamma \right) - c_1 s_1 - \bar \Gamma \right] - \frac{1}{\gamma_1} \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2}tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) \\ &= -c_1 s_1^T s_1 + s_1^T J^{-1} \hat J \bar \Gamma + \left( - s_1^T J^{-1} \hat d_\Gamma + s_1^T J^{-1} d_\Gamma \right) - s_1^T \bar \Gamma - \frac{1}{\gamma_1} \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2}tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) \\ &= -c_1 s_1^T s_1 + s_1^T J^{-1} \hat J \bar \Gamma + s_1^T J^{-1} \tilde d_\Gamma - s_1^T \bar \Gamma - \frac{1}{\gamma_1} \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2}tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) \\ &= -c_1 s_1^T s_1 + s_1^T J^{-1} \hat J \bar \Gamma + s_1^T J^{-1} \tilde d_\Gamma - \left( s_1^T J^{-1} J \bar \Gamma \right) - \frac{1}{\gamma_1} \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2}tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) \\ &= -c_1 s_1^T s_1 + s_1^T J^{-1} \hat J \bar \Gamma - \frac{1}{\gamma_1} \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2}tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) - s_1^T J^{-1} \left( J - \hat J \right) \bar \Gamma \\ &= -c_1 s_1^T s_1 + s_1^T J^{-1} \hat J \bar \Gamma - \frac{1}{\gamma_1} \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2}tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) - s_1^T J^{-1} \tilde J \bar \Gamma \end{aligned} V˙1=s1Ts˙1+γ11d~ΓTJ1d~˙Γ+γ21tr(J~TJ1J~˙)=s1Ts˙1γ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)=s1T[J1(J^Γˉd^Γ+dΓ)c1s1Γˉ]γ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)=c1s1Ts1+s1TJ1J^Γˉ+(s1TJ1d^Γ+s1TJ1dΓ)s1TΓˉγ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)=c1s1Ts1+s1TJ1J^Γˉ+s1TJ1d~Γs1TΓˉγ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)=c1s1Ts1+s1TJ1J^Γˉ+s1TJ1d~Γ(s1TJ1JΓˉ)γ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)=c1s1Ts1+s1TJ1J^Γˉγ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)s1TJ1(JJ^)Γˉ=c1s1Ts1+s1TJ1J^Γˉγ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)s1TJ1J~Γˉ下面引入3个性质:
对于 d ~ Γ \tilde d_\Gamma d~Γ d ~ Γ T \tilde d_\Gamma^T d~ΓT
d ~ Γ T J − 1 d ^ ˙ Γ = d ^ ˙ Γ T J − 1 d ~ Γ \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma = \dot {\hat d}_\Gamma^T J^{-1} \tilde d_\Gamma d~ΓTJ1d^˙Γ=d^˙ΓTJ1d~Γ
s 1 T J − 1 J ^ Γ ˉ = t r ( J − 1 J ~ Γ ˉ s 1 T ) s_1^T J^{-1} \hat J \bar \Gamma = tr \left( J^{-1} \tilde J \bar \Gamma s_1^T \right) s1TJ1J^Γˉ=tr(J1J~Γˉs1T)
t r ( J ~ T J − 1 J ^ ˙ ) = t r ( J − 1 J ~ J ^ ˙ ) tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) = tr \left( J^{-1} \tilde J \dot {\hat J} \right) tr(J~TJ1J^˙)=tr(J1J~J^˙)则代入(1)有
V ˙ 1 = − c 1 s 1 T s 1 + s 1 T J − 1 J ^ Γ ˉ − 1 γ 1 d ~ Γ T J − 1 d ^ ˙ Γ − 1 γ 2 t r ( J ~ T J − 1 J ^ ˙ ) − s 1 T J − 1 J ~ Γ ˉ = − c 1 s 1 T s 1 + s 1 T J − 1 J ^ Γ ˉ − 1 γ 1 d ^ ˙ Γ T J − 1 d ~ Γ − 1 γ 2 t r ( J − 1 J ~ J ^ ˙ ) − t r ( J − 1 J ~ Γ ˉ s 1 T ) = − c 1 s 1 T + ( s 1 T J − 1 − 1 γ 1 d ^ ˙ Γ T J − 1 ) d ~ Γ − t r ( J − 1 J ~ Γ ˉ s 1 T + 1 γ 2 J − 1 J ~ J ^ ˙ ) = − c 1 s 1 T + ( s 1 T J − 1 − 1 γ 1 d ^ ˙ Γ T J − 1 ) d ~ Γ − t r [ J − 1 J ~ ( Γ ˉ s 1 T + 1 γ 2 J ^ ˙ ) ] = − c 1 s 1 T + ( s 1 T J − 1 − 1 γ 1 d ^ ˙ Γ T J − 1 ) d ~ Γ − ( Γ ˉ s 1 T + 1 γ 2 J ^ ˙ ) J − 1 J ~ \begin{aligned} \dot V_1 &= -c_1 s_1^T s_1 + s_1^T J^{-1} \hat J \bar \Gamma - \frac{1}{\gamma_1} \tilde d_\Gamma^T J^{-1} \dot {\hat d}_\Gamma - \frac{1}{\gamma_2}tr \left( \tilde J^T J^{-1} \dot {\hat J} \right) - s_1^T J^{-1} \tilde J \bar \Gamma \\ &= -c_1 s_1^T s_1 + s_1^T J^{-1} \hat J \bar \Gamma - \frac{1}{\gamma_1} \dot {\hat d}_\Gamma^T J^{-1} \tilde d_\Gamma - \frac{1}{\gamma_2}tr \left( J^{-1} \tilde J \dot {\hat J} \right) -tr \left( J^{-1} \tilde J \bar \Gamma s_1^T \right) \\ &= -c_1 s_1^T + \left( s_1^T J^{-1} - \frac{1}{\gamma_1} \dot {\hat d}_\Gamma^T J^{-1} \right) \tilde d_\Gamma - tr \left( J^{-1} \tilde J \bar \Gamma s_1^T + \frac{1}{\gamma_2} J^{-1} \tilde J \dot {\hat J} \right) \\ &= -c_1 s_1^T + \left( s_1^T J^{-1} - \frac{1}{\gamma_1} \dot {\hat d}_\Gamma^T J^{-1} \right) \tilde d_\Gamma - tr \left[ J^{-1} \tilde J \left( \bar \Gamma s_1^T + \frac{1}{\gamma_2} \dot {\hat J} \right) \right] \\ &= -c_1 s_1^T + \left( s_1^T J^{-1} - \frac{1}{\gamma_1} \dot {\hat d}_\Gamma^T J^{-1} \right) \tilde d_\Gamma - \left( \bar \Gamma s_1^T + \frac{1}{\gamma_2} \dot {\hat J}\right) J^{-1} \tilde J \end{aligned} V˙1=c1s1Ts1+s1TJ1J^Γˉγ11d~ΓTJ1d^˙Γγ21tr(J~TJ1J^˙)s1TJ1J~Γˉ=c1s1Ts1+s1TJ1J^Γˉγ11d^˙ΓTJ1d~Γγ21tr(J1J~J^˙)tr(J1J~Γˉs1T)=c1s1T+(s1TJ1γ11d^˙ΓTJ1)d~Γtr(J1J~Γˉs1T+γ21J1J~J^˙)=c1s1T+(s1TJ1γ11d^˙ΓTJ1)d~Γtr[J1J~(Γˉs1T+γ21J^˙)]=c1s1T+(s1TJ1γ11d^˙ΓTJ1)d~Γ(Γˉs1T+γ21J^˙)J1J~再代入自适应律(6)
V ˙ 1 = − c 1 s 1 T + ( s 1 T J − 1 − 1 γ 1 d ^ ˙ Γ T J − 1 ) d ~ Γ − ( Γ ˉ s 1 T + 1 γ 2 J ^ ˙ ) J − 1 J ~ = − c 1 s 1 T + [ s 1 T J − 1 − 1 γ 1 ( γ 1 s 1 T ) J − 1 ] d ~ Γ − [ Γ ˉ s 1 T − 1 γ 2 ( γ 2 Γ ˉ s 1 T ) ] J − 1 J ~ = − c 1 s 1 T s 1 ≤ 0 \begin{aligned} \dot V_1 &= -c_1 s_1^T + \left( s_1^T J^{-1} - \frac{1}{\gamma_1} \dot {\hat d}_\Gamma^T J^{-1} \right) \tilde d_\Gamma - \left( \bar \Gamma s_1^T + \frac{1}{\gamma_2} \dot {\hat J}\right) J^{-1} \tilde J \\ &= -c_1 s_1^T + \left[ s_1^T J^{-1} - \frac{1}{\gamma_1} \left( \gamma_1 s_1^T \right) J^{-1} \right] \tilde d_\Gamma - \left[ \bar \Gamma s_1^T - \frac{1}{\gamma_2} \left( \gamma_2 \bar \Gamma s_1^T \right) \right] J^{-1} \tilde J \\ &= -c_1 s_1^T s_1 \leq 0 \end{aligned} V˙1=c1s1T+(s1TJ1γ11d^˙ΓTJ1)d~Γ(Γˉs1T+γ21J^˙)J1J~=c1s1T+[s1TJ1γ11(γ1s1T)J1]d~Γ[Γˉs1Tγ21(γ2Γˉs1T)]J1J~=c1s1Ts10即满足李雅普诺夫稳定性

4. 高度控制器

设计滑模面
s 2 = e ˙ z + λ 2 e z s_2 = \dot e_z + \lambda_2 e_z s2=e˙z+λ2ez其中 e z = z − z d e_z = z - z_d ez=zzd
对其求导
s ˙ 2 = e ¨ z + λ 2 e ˙ z = z ¨ − z ¨ d + λ 2 e ˙ z \dot s_2 = \ddot e_z + \lambda_2 \dot e_z = \ddot z - \ddot z_d + \lambda_2 \dot e_z s˙2=e¨z+λ2e˙z=z¨z¨d+λ2e˙z
又因为
m 3 z ¨ 1 = U 1 cos ⁡ φ cos ⁡ θ − m 0 g + f ( z ) − C 0 z ˙ + ρ m_3 \ddot z _1 = U_1 \cos \varphi \cos \theta - m_0 g + f(z) - C_0 \dot z + \rho m3z¨1=U1cosφcosθm0g+f(z)C0z˙+ρ因此
z ¨ = U 1 m 3 cos ⁡ φ cos ⁡ θ − m 0 m 3 g + f ( z ) m 3 − C 0 m 3 z ˙ + ρ m 3 \ddot z = \frac{U_1}{m_3} \cos \varphi \cos \theta - \frac{m_0}{m_3} g + \frac{f(z)}{m_3} - \frac{C_0}{m_3} \dot z + \frac{\rho}{m_3} z¨=m3U1cosφcosθm3m0g+m3f(z)m3C0z˙+m3ρ
因此,
s ˙ 2 = U 1 m 3 cos ⁡ φ cos ⁡ θ − m 0 m 3 g + f ( z ) m 3 − C 0 m 3 z ˙ + ρ m 3 − z ¨ d + λ 2 e ˙ z \dot s_2 = \frac{U_1}{m_3} \cos \varphi \cos \theta - \frac{m_0}{m_3} g + \frac{f(z)}{m_3} - \frac{C_0}{m_3} \dot z + \frac{\rho}{m_3} - \ddot z_d + \lambda_2 \dot e_z s˙2=m3U1cosφcosθm3m0g+m3f(z)m3C0z˙+m3ρz¨d+λ2e˙z
参考公式(0),可以设计控制量 U 1 U_1 U1
U 1 = m ^ 3 L + m 0 g − f ( z ) + C 0 z ˙ − ρ ^ cos ⁡ φ cos ⁡ θ (12) U_1 = \frac{ \hat m_3 L + m_0 g - f(z) + C_0 \dot z - \hat \rho}{\cos \varphi \cos \theta} \tag{12} U1=cosφcosθm^3L+m0gf(z)+C0z˙ρ^(12)并且其中
L = − τ s 2 − k ⋅ s g n ( s 2 ) + z ¨ d − λ 2 e ˙ z (13) L = -\tau s_2 - k \cdot sgn \left( s_2 \right) + \ddot z_d - \lambda_2 \dot e_z \tag{13} L=τs2ksgn(s2)+z¨dλ2e˙z(13) ρ \rho ρ为干扰。
设计自适应律
{ m ^ ˙ 3 = − k 1 L s 2 ρ ^ ˙ = k 2 s 2 (14) \begin{cases} \dot {\hat m}_3 = -k_1 Ls_2 \\ \dot {\hat \rho} = k_2 s_2 \tag{14} \end{cases} {m^˙3=k1Ls2ρ^˙=k2s2(14)
以及李雅普诺夫函数
V 2 = 1 2 s 2 2 + 1 2 m 3 k 1 m ~ 3 2 + 1 2 m 3 k 2 ρ ~ 2 (15) V_2 = \frac{1}{2} s_2^2 + \frac{1}{2m_3 k_1} \tilde m_3^2 + \frac{1}{2m_3 k_2} \tilde \rho^2 \tag{15} V2=21s22+2m3k11m~32+2m3k21ρ~2(15)求导有
V ˙ 2 = s 2 s ˙ 2 + 1 m 3 k 1 m ~ 3 m ~ ˙ 3 + 1 m 3 k 2 ρ ~ ρ ~ ˙ (16) \dot V_2 = s_2 \dot s_2 + \frac{1}{m_3 k_1} \tilde m_3 \dot {\tilde m}_3+\frac{1}{m_3 k_2} \tilde \rho \dot {\tilde \rho} \tag{16} V˙2=s2s˙2+m3k11m~3m~˙3+m3k21ρ~ρ~˙(16)同样认为 m 3 , ρ m_3, \rho m3,ρ变化缓慢,参考(10)有
m ~ ˙ 3 = − m ^ ˙ 3 , ρ ~ ˙ = − ρ ^ ˙ (17) \dot {\tilde m}_3 = -\dot {\hat m}_3, \quad \dot {\tilde \rho} = - \dot {\hat \rho} \tag{17} m~˙3=m^˙3,ρ~˙=ρ^˙(17)那么有式(18)
V ˙ 2 = s 2 s ˙ 2 + 1 m 3 k 1 m ~ 3 m ~ ˙ 3 + 1 m 3 k 2 ρ ~ ρ ~ ˙ = s 2 ( U 1 m 3 cos ⁡ φ cos ⁡ θ − m 0 m 3 g + f ( z ) m 3 − C 0 m 3 z ˙ + ρ m 3 − z ¨ d + λ 2 e ˙ z ) − 1 m 3 k 1 m ~ 3 m ^ ˙ 3 − 1 m 3 k 2 ρ ~ ρ ^ ˙ \begin{aligned} \dot V_2 &= s_2 \dot s_2 + \frac{1}{m_3 k_1} \tilde m_3 \dot {\tilde m}_3+\frac{1}{m_3 k_2} \tilde \rho \dot {\tilde \rho} \\ &= s_2 \left( \frac{U_1}{m_3} \cos \varphi \cos \theta - \frac{m_0}{m_3} g + \frac{f(z)}{m_3} - \frac{C_0}{m_3} \dot z + \frac{\rho}{m_3} - \ddot z_d + \lambda_2 \dot e_z \right) - \frac{1}{m_3 k_1} \tilde m_3 \dot {\hat m}_3-\frac{1}{m_3 k_2} \tilde \rho \dot {\hat \rho} \end{aligned} V˙2=s2s˙2+m3k11m~3m~˙3+m3k21ρ~ρ~˙=s2(m3U1cosφcosθm3m0g+m3f(z)m3C0z˙+m3ρz¨d+λ2e˙z)m3k11m~3m^˙3m3k21ρ~ρ^˙再把式(12) U 1 U_1 U1的表达式代入,并考虑自适应律(14)
V ˙ 2 = s 2 ( m ^ 3 m 3 L + ρ ~ m 3 − z ¨ d + λ 2 e ˙ z ) + 1 m 3 k 1 m ~ 3 k 1 L s 2 − 1 m 3 k 2 ρ ~ k 2 s 2 = ρ ~ m 3 s 2 − z ¨ d s 2 + λ 2 s 2 e ˙ z + m ^ 3 m 3 L s 2 − 1 m 3 ρ ~ s 2 + m ^ 3 m 3 L s 2 \begin{aligned} \dot V_2 &= s_2 \left( \frac{\hat m_3}{m_3} L + \frac{\tilde \rho}{m_3} - \ddot z_d + \lambda_2 \dot e_z \right) + \frac{1}{m_3 k_1} \tilde m_3 k_1 L s_2 - \frac{1}{m_3 k_2} \tilde \rho k_2 s_2 \\ &= \frac{\tilde \rho}{m_3} s_2 - \ddot z_d s_2 + \lambda_2 s_2 \dot e_z + \frac{\hat m_3}{m_3} L s_2 - \frac{1}{m_3} \tilde \rho s_2 + \frac{\hat m_3}{m_3} L s_2 \end{aligned} V˙2=s2(m3m^3L+m3ρ~z¨d+λ2e˙z)+m3k11m~3k1Ls2m3k21ρ~k2s2=m3ρ~s2z¨ds2+λ2s2e˙z+m3m^3Ls2m31ρ~s2+m3m^3Ls2代入式(13)
V ˙ 2 = − z ¨ d s 2 + λ 2 s 2 e ˙ z + s 2 ( − τ s 2 − k ⋅ s g n ( s 2 ) + z ¨ d − λ 2 e ˙ z ) = − z ¨ d s 2 + λ 2 s 2 e ˙ z − τ s 2 2 − k ∣ s 2 ∣ + s 2 z ¨ d − λ 2 s 2 e ˙ z = − τ s 2 2 − k ∣ s 2 ∣ ≤ 0 \begin{aligned} \dot V_2 &= - \ddot z_d s_2 + \lambda_2 s_2 \dot e_z + s_2 \left( -\tau s_2 - k \cdot sgn \left( s_2 \right) + \ddot z_d - \lambda_2 \dot e_z \right) \\ &= - \ddot z_d s_2 + \lambda_2 s_2 \dot e_z-\tau s_2^2 - k \lvert s_2 \rvert + s_2 \ddot z_d - \lambda_2 s_2 \dot e_z \\ &= -\tau s_2^2 - k \lvert s_2 \rvert \leq 0 \end{aligned} V˙2=z¨ds2+λ2s2e˙z+s2(τs2ksgn(s2)+z¨dλ2e˙z)=z¨ds2+λ2s2e˙zτs22ks2+s2z¨dλ2s2e˙z=τs22ks20亦满足李雅普诺夫稳定性!

5. simulink仿真

搭建simulink框图如下
simulink框图
其中各个模块内部如下:

  1. s1模块
    s1模块
  2. s2模块
    s2模块
  3. J_hat, dgamma_hat模块
    J_aht dgamma_hat模块
  4. dgamma模块
    dgamma模块
  5. m3_hat, rho_hat模块
    m3_aht, rho_hat模块
  6. Attitude Control模块
    Attitude Control模块
  7. Altitude Control模块
    Altitude Control模块
  8. dot_eta2模块
    dot_eta2模块
  9. MathModel模块
    MathModel模块

6. 仿真结果

仿真结果如下。

  1. 姿态通道
    姿态通道
  2. 高度通道
    高度通道
  3. 控制量
    控制量
  4. 估计转动惯量 J i J_i Ji与估计质量 m ^ 3 \hat m_3 m^3
    估计转动惯量与估计质量
  5. 高度误差
    高度误差
  6. 估计扰动 d Γ d_\Gamma dΓ
    估计扰动

7. 结论

可以看出:

  1. 自适应滑模控制可以很好地控制四旋翼飞行稳定性。
  2. 该方法并不能很好估计扰动 d Γ d_\Gamma dΓ、总质量 m 3 m_3 m3、转动惯量 J i J_i Ji,估计值与真实值有较大差别。但是估计值均为有界值,且能维持飞行稳定。
  3. 由于控制量 U 1 U_1 U1表达式中的 L L L含有符号项 s g n sgn sgn,因此当调节过程末尾曲线趋于稳定时,真实值会在期望值附近上下摆动,引发 s g n sgn sgn符号在正负之间来回切换,该切换高频且振荡,因此 U 1 U_1 U1为一高频振荡的信号。这也是滑模控制的一个缺点,当实际硬件无法承受这种高频振荡时,往往会无法满足控制需求,进而引发硬件宕机或工作失稳。
### FOC 控制中的滑模观测器设计 #### 滑模观测器的工作原理 在永磁同步电机(PMSM)的FOC控制系统中,滑模观测器(SMO)用于估计转子的位置和速度。SMO通过引入不连续项来迫使系统的状态轨迹到达并保持在一个预定义的滑动面上,在这个面上系统表现出期望的动力学特性[^1]。 #### Simulink 中的 SMO 建模 为了构建电流观测器模型,首先需要建立PMSM的状态空间方程。这些方程描述了定子电流、反电动势以及电磁转矩之间的关系。基于此,可以进一步推导出用于估算转子位置的速度估算模块和2πf计算的角度补偿部分。 对于Simulink建模而言: - **电流观测器**:利用已知输入电压和测量得到的相电流作为输入信号,输出为预测的d-q轴电流分量。 - **反电动势估算**:根据上述获得的d-q轴电流值及其变化率,结合电机参数矩阵,求解出相应的反电势向量。 - **转子位置与速度估算**:通过对时间积分处理后的角频率ω(t),可以获得当前时刻下的机械角度θm;而实际运行过程中所需的电气角度则需乘以极对数p后再加上初始偏移量φ0形成最终表达式θe=p*θm+φ0。 - **2πf 计算及角度补偿**:考虑到数字控制器固有的延迟效应会对实时性能造成影响,因此有必要加入额外的角度前馈环节来进行适当校正,确保整个闭环系统的稳定性与响应精度。 ```matlab % MATLAB/Simulink代码片段展示如何设置基本框架 function dxdt = stateEquations(x, u, params) % 定义状态变量 x 和 输入u (如三相电流/电压), 参数params(电阻R,L等) % ...此处省略具体物理公式... end % 创建S函数或使用内置模块搭建完整的仿真环境 ``` #### 结果分析 完成以上各部分内容之后,可以通过对比实验数据验证所提方案的有效性和准确性。通常情况下会记录下不同工况条件下电机的实际工作状况,并将其同理论预期进行比较评估误差范围内的表现情况。
评论 67
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值