产品经理转行 AI产品经理基础教程(非常详细),AI产品经理入门到精通,收藏这一篇就够了!

作为一个非算法出身的AI产品经理,转行之前我也有过纠结和顾虑,怕自己“干不了”。

在做了3年AI产品之后,我的结论是:现如今大模型跑步落地的时期,存在很多信息差,非常适合“乱入”。

当下转行AI产品经理的优势

市场需求大,行业发展前景广阔

从chatgpt问世以来,AI技术的发展是有目共睹的。但是大模型公司烧了那么多钱把AI做出来了,总得变现吧?各行各业的资本家们,也总得想着剥削它一下,让它帮自己干点啥吧?我们在实际工作中,就经常接触到各种行业的客户,有律所的、有国企的、有港口的,几乎每个行业都想给自己的产品“加点AI”。

所以AI产品经理的市场需求量自然就变大了,这个体感是非常明显的。

薪资待遇优渥,提升空间大

根据行业数据,AI产品经理的薪资一般都比传统产品经理要高30%-50%,就是不看数据,自己去boss上翻翻,也能了解个大概。

在这里插入图片描述

一方面是用人需求大,另一方面是AI的技术壁垒更高,掌握一定的技术知识的产品经理自然会有更高的溢价。

而且更妙的是,AI的商业化尚在前半程,所以比起传统产品,AI领域的产品经理,会更有话语权、发挥空间,会更有价值感。

我自己的亲身感受就是,在新兴领域工作,大家都是摸着石头过河,从产品交互方式、产品逻辑,技术选型,每天和客户、和开发、和算法无数次脑暴;和在抄竞品、看数据、模式形态都卷烂了的行业时相比,精神面貌都变好了。

在这里插入图片描述

能够站在技术前沿,接触最尖端的创新应用

进入AI领域,不仅能接触到最前沿的技术,还能参与到影响未来社会的产品开发。翻译成人话就是B格高。。。

存在信息差

很多人认为AI产品经理的工作主要就是和机器学习、NLP自然语言处理这些复杂的算法技术打交道,所以碰都不敢碰。实际上,国内大部分AI产品经理都是在“包装”AI,而不是“发明”AI,AI产品经理干的主要还是普通产品经理的活。

所以呢,很多公司紧急招人的时候,传统的产品能力过硬,对AI有了解,甚至感兴趣的产品,也有可能就要了。新人刚开始一般也是一脸懵逼,然后一边学一边干,也能很好地胜任。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值