CNN项目1-ResNet模型图像分类之工业缺陷检测

CNN项目1-ResNet模型图像分类之工业缺陷检测

1.类别文件

  • class_indices.json文件
{
    "0": "In",
    "1": "Sc",
    "2": "Cr",
    "3": "PS",
    "4": "RS",
    "5": "Pa"
}
# 1.1 类别说明
  # CR 裂纹 crackle
  # In 夹杂 inclusion
  # SC 划痕 scratch
  # PS 压入氧化皮  press in oxide scale
  # RS 麻点
  # PA 斑点

2.数据集

  • my_dataset.py 创建自己数据集, 集成自pytorch的dataset类, 必须实现__len__和__getitem__
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import cv2 as cv

# 2.1 缺陷类别
defect_labels = ['In', 'Sc', 'Cr', 'PS', 'RS', 'Pa']

# 2.2 缺陷数据集
class SurfaceDefectDataset(Dataset):
    def __init__(self, root_dir):
        self.transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]),
                transforms.Resize((200, 200))])
        img_files = os.listdir(root_dir)
        self.defect_types = []
        self.images = []
        for file_name in img_files:
            defect_class = file_name.split('_')[0]  # 以下划线分割文件名
            defect_index = defect_labels.index(defect_class) # 缺陷类别转为索引
            self.images.append(os.path.join(root_dir, file_name)) # 图片路径和图片名
            self.defect_types.append(defect_index) # 缺陷索引
    def __len__(self):
        return len(self.images)
    def __getitem__(self, idx):
        image_path = self.images[idx] # 通过索引获取图片路径和图片名
        img = cv.imread(image_path) # BGR
        img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
        sample = {'image': self.transform(img), 'defect': self.defect_types[idx]}
        return sample
if __name__ == '__main__':
    ds = SurfaceDefectDataset('./enu_surface_defect/train')
    print(len(ds))
    print(ds[0]['image'].shape, ds[0]['defect'])
    
# 2.3 数据加载器
    dl = DataLoader(ds, batch_size=8, shuffle=True, num_workers=8)
    sample = next(iter(dl))
    print(type(sample))
    print(sample['image'].shape)

在这里插入图片描述

3.模型

  • model.py文件
import torch
import torchvision
class SurfaceDectectResNet(torch.nn.Module):
    def __init__(self, num_classes=1000):
        super().__init__()
        self.cnn_layers = torchvision.models.resnet18(pretrained=True)
        in_features = self.cnn_layers.fc.in_features
        self.cnn_layers.fc = torch.nn.Linear(in_features, num_classes) # 更改模型池化层输出类别
    def forward(self, x):
        out = self.cnn_layers(x)
        return out

4.训练及校验

  • train.py
import os
import json
import sys
import torch
import torch.nn as nn
from torchvision import transforms, datasets
from tqdm import tqdm
from my_dataset import SurfaceDefectDataset
from my_dataset import defect_labels
from model import SurfaceDectectResNet

# 4.1 数据生成器
def main():
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    print(f'using {device}')
    train_dataset = SurfaceDefectDataset('./enu_surface_defect/train') 
    train_num = len(train_dataset)
    cla_dict = dict((i, label) for i, label in enumerate(defect_labels)) # 类别和index的对应关系写入文件
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)
    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
    print(f'using {nw} dataloader workers every process')
    train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,
                                               shuffle=True,num_workers=nw)
    validate_dataset = SurfaceDefectDataset('./enu_surface_defect/test')
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,batch_size=batch_size,
                                               shuffle=True,num_workers=nw)
                                               
# 4.2 训练
    net = SurfaceDectectResNet(num_classes=6)
    net.to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(net.parameters(), lr=0.0001)
    epochs = 10
    save_path = './model.pth'
    best_acc = 0.0
    train_steps = len(train_loader)
    for epoch in range(epochs): # 训练10次
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data['image'], data['defect']
            optimizer.zero_grad()
            outputs = net(images.to(device))
            loss = loss_fn(outputs, labels.to(device))
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            train_bar.desc = f'train epoch[{epoch + 1}/{epochs}] loss:{loss:.3f}'
            
# 4.3 校验
        net.eval() 
        acc = 0.0
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data['image'], val_data['defect']
                outputs = net(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
        val_accuracy = acc / val_num
        print(f'[epoch {epoch + 1} train_loss: {running_loss / train_steps:.3f},'
              f'val_accuracy:{val_accuracy:.3f}')
        if val_accuracy > best_acc:
            best_acc = val_accuracy
            torch.save(net.state_dict(), save_path)
if __name__ == '__main__':
    main()

在这里插入图片描述

5.预测

  • predict.py
import os
import json
import torch
from torchvision import transforms
import matplotlib.pyplot as plt
import cv2 as cv
from model import SurfaceDectectResNet

# 5.1 图片数据读取 
def main():
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    data_transform = transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]),
                    transforms.Resize((200, 200))])
    img_path = 'Cr_1.bmp'
    assert os.path.exists(img_path), f'{img_path} does not exist'
    img = cv.imread(img_path)
    
# 5.2 图片数据显示
    img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
    plt.imshow(img)
    
# 5.3 图片数据增强及预处理
    img = data_transform(img)
    img = torch.unsqueeze(img, dim=0) # 图片二维
    json_path = './class_indices.json'
    assert os.path.exists(json_path), f'{json_path} does not exist'
    with open(json_path, 'r') as f:
        class_dict = json.load(f)
        
# 5.4 加载模型及参数
    model = SurfaceDectectResNet(num_classes=6).to(device)
    weights_path = './model.pth'
    assert os.path.exists(weights_path), f'{weights_path} does not exist'
    model.load_state_dict(torch.load(weights_path))
    
# 5.5 预测
    model.eval()
    with torch.no_grad():
        output = model(img.to(device))
        output = torch.squeeze(output).cpu()
        predict = torch.softmax(output, dim=0)
        predict_class = torch.argmax(predict).numpy()
    print_res = f'class: {class_dict[str(predict_class)]}, prob:{predict[predict_class].numpy()}'
    plt.title(print_res)
    plt.show()
if __name__ == '__main__':
    main()

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿值

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值