【负荷预测】基于TCN-LSTM的负荷预测研究(Python代码实现)

                 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、TCN-LSTM模型概述

1. TCN(时间卷积网络)

2. LSTM(长短期记忆网络)

3. TCN-LSTM结合

三、基于TCN-LSTM的负荷预测方法

1. 数据预处理

2. 模型构建

3. 模型训练与评估

4. 预测与结果分析

四、实验结果与分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于TCN-LSTM的负荷预测研究

一、引言

负荷预测是电力系统中的重要环节,对于保障电力系统的稳定运行、优化资源配置和提高经济效益具有重要意义。随着智能电网的快速发展和大数据技术的广泛应用,负荷预测面临着更高的要求和挑战。传统的负荷预测方法往往难以处理复杂的非线性关系和长期依赖性问题,而深度学习技术,特别是时间卷积网络(TCN)和长短期记忆网络(LSTM)的结合,为负荷预测提供了新的解决方案。本文旨在探讨基于TCN-LSTM的负荷预测方法,并分析其在实际应用中的效果和优势。

二、TCN-LSTM模型概述

1. TCN(时间卷积网络)

TCN是一种特殊的卷积神经网络(CNN),专为处理时间序列数据而设计。它通过一系列卷积层捕捉时间序列中的局部依赖关系,并通过因果卷积和膨胀卷积(Dilated Convolution)实现长期依赖关系的提取。TCN的优点在于其能够并行处理数据,提高计算效率,并且不需要像RNN那样处理序列数据的长期依赖问题。

2. LSTM(长短期记忆网络)

LSTM是一种特殊的循环神经网络(RNN),通过引入门控机制(遗忘门、输入门和输出门)解决了传统RNN在处理长序列时容易出现的梯度消失或梯度爆炸问题。LSTM能够捕捉时间序列中的长期依赖关系,并在许多序列预测任务中表现出色。

3. TCN-LSTM结合

将TCN和LSTM结合起来的TCN-LSTM模型,能够充分利用TCN在特征提取和并行计算方面的优势,以及LSTM在捕捉长期依赖关系方面的能力。这种组合模型在处理复杂时间序列数据时,能够更全面地提取信息,提高预测精度。

三、基于TCN-LSTM的负荷预测方法

1. 数据预处理

在进行负荷预测之前,需要对原始数据进行预处理。这包括数据清洗(如处理缺失值、异常值等)、数据变换(如标准化、归一化等)以及特征选择(选择对预测结果影响较大的特征)等步骤。此外,还需要根据负荷数据的特点和预测需求,确定预测的时间尺度和目标变量。

2. 模型构建

基于TCN-LSTM的负荷预测模型构建主要包括以下几个步骤:

  • 输入层:接收预处理后的时间序列数据作为输入。
  • TCN层:通过TCN网络进行特征提取,捕捉时间序列中的局部和全局依赖关系。
  • LSTM层:将TCN层的输出作为LSTM网络的输入,进一步捕捉时间序列中的长期依赖关系。
  • 输出层:输出预测结果,即未来某时刻的负荷值。

3. 模型训练与评估

在模型构建完成后,需要使用训练集对模型进行训练,并使用验证集对模型进行评估。在训练过程中,可以通过调整超参数(如学习率、批次大小、迭代次数等)来优化模型的性能。同时,还可以使用交叉验证等方法来评估模型的稳定性和泛化能力。训练完成后,可以使用测试集对模型的预测性能进行最终评估。

4. 预测与结果分析

使用训练好的TCN-LSTM模型对目标时间段的负荷进行预测,并对比真实值分析预测误差。根据预测结果和误差分析,可以对模型进行进一步的优化和调整。

四、实验结果与分析

已有研究表明,基于TCN-LSTM的负荷预测模型在多个数据集上均表现出了优异的性能。例如,在某地区电力负荷预测任务中,TCN-LSTM模型相比传统预测方法和单一深度学习模型在预测精度上有显著提升。此外,TCN-LSTM模型还具有较好的泛化能力和稳定性,能够在不同场景下保持较好的预测性能。

五、结论与展望

本文探讨了基于TCN-LSTM的负荷预测方法,并分析了其在实际应用中的效果和优势。实验结果表明,TCN-LSTM模型在负荷预测中具有较高的精度和稳定性。未来研究可以进一步探索TCN-LSTM模型与其他算法的融合应用,以及多源数据融合技术在负荷预测中的应用等方向,以进一步提高负荷预测的精度和效率。同时,随着智能电网和大数据技术的不断发展,基于TCN-LSTM的负荷预测方法将在能源管理和决策中发挥更加重要的作用。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值