第一节:编程基础学习–R语言
1.R和Rstudio的安装、环境配置
2.R语言简单语法及常见命令
3.以Cell文章方法描述学习R包的安装及使用
4.以Nature文章源代码学习重点函数基础代码
第二节:编程基础知识—数据结构
1.向量、矩阵、数据框和列表的创建和索引
2.多种数据结构的合并【Cell】
3.自定义Function函数构建
4.for循环、字符型数据的处理【Cell】
第三节:以Nature文章源代码学习转录组数据表达矩阵处理基本处理
1.重复基因和缺失值的删除
2.不同分组样本的批量归类【Nature】
3.多个样本的表达矩阵合并
4.芯片探针基因名字的转换【Nature】
第四节:以Cell文章源代码学习生存曲线
1.临床预后信息的批量整理
2.创建生存对象、拟合曲线【Cell】
3.特定基因的筛选构建预后分组
4.combat算法不同数据集的批次处理
第五节:差异分析 RNAseq数据分析
1.芯片数据上游分析【Cancer Discovery】
2.多个样本的数据归一化处理
3.分组矩阵系统讲解【Nature】
4.Deseq2分析流程【Science】
5.EdgeR差异分析系统讲解
第六节:以多篇CNS文章源代码学习画图
1.ggplot体系画图包括热图
2.火山图 箱线图 小提琴图【Nature】
3.多分组显著性p值添加方法【Nat Med】
4.三维pca图展示差异特征【Science】
5.层次聚类算法区分不同样本特征
第七节:基因集富集分析
1.over representation
2.GSEA 富集 【Cancer Cell】
3.包括自定义基因集的富集分析
4.富集通路网络图【Nat Genet】
5.蛋白互作网络构建【Nature】
第八节:以Nature文章为例系统讲解单细胞转录组基本分析
1.单细胞在CNS文章思路解析及常见图形解读
2.数据质控、数据放缩、PCA降维、聚类
3.三维tSNE、UMAP可视化【Science】
4.单细胞多组学分析思路和方法【Nature】
第九节 :单细胞转录组拟时序分析
1.monocle拟时序分析 【Nature】
2.细胞排序,构造一棵生成树
3.基因随轨迹分析变化热图【Cell】
4.BEAM轨迹分支分析【Nature】
5.自测和挖掘单细胞项目思路归纳总结
第十节:空间转录组理论及分析内容
1.空间转录组技术发展历程和原理介绍
2.空间转录组CNS文章思路解析及常见图解读
3.10x Visium 基本分析流程【Cancer Cell】
4.空间数据与单细胞整合分析思路
第十一节课:高分辨空间转录组分析
1.Xenium 空转数据分析【Nature】
2.Visium HD空转数据分析【Cell】
3.Stereo-seq “亚细胞级分辨率”测序介绍
4.空间测序多截面3D邻域重建【Nature】
第十二节课:机器学习基础理论
1.随机森林和支持向量机(SVM)
2.弹性网络回归算法Enet【Cell】
3.广义提升回归模型(GBM)
第十三节课:表观遗传研究
1.ChIP-seq、ATAC-seq在CNS文章中应用
2.ChIP-seq数据分析峰值可视化【Nature】
3.ATAC-seq数据peak注释****【Cancer Cell】
4.峰值在外显子、内含子、启动子的分布计算
第十四节:加权基因共表达网络分析 (WGCNA)算法系统讲解以****nature文章为例
1.构建邻接矩阵和拓扑重叠矩阵
2.无尺度网络模型【Nature】
3.共表达调控网络【Cell】
第十五节:免疫浸润计算
1.CIBERSORT反卷积算法,以TCGA数据为例
2.非监督共识聚类算法【Science】
3.转录因子富集【Cell Stem Cell】
4.Mfuzz、 BioNet调控网络构建