俗话说得好,复现就是最好的学习;
趟着前人的经验,才能研究得更高更远。
所以,研究生如何高效查找与复现文献代码,首先要找到代码。
在进行研究生阶段的研究时,找到相关的代码并复现文献是至关重要的一步。以下是几种实用的方法:
1. 直接到GitHub上搜索相关领域的关键词:
在GitHub上搜索相关领域的关键词,可能会找到相关的代码,最好是阅读过一定文献之后,掌握该领域的一些关键词以及高频词,进行英文搜索,可以的话仓库以及code,以及issue都可以搜索查看,当然可以进一步限制搜索条件提高搜索速度;
在代码的readme文件中,可能会有相关论文的链接;
数据归档工具数据库zenodo(Zenodo)同理
2,在文献中查找代码链接:
使用Ctrl+F在全文中搜索“GitHub”或其他关键词,比如说是code、或者github、或者是zenodo(数据归档数据库),
生信的话还可以搜索GEO、TCGA等数据库关键词,也许会找到数据库的附加信息等,顺藤摸瓜就是数据
3,关注文献的supplement文件,尤其是一些pdf以及word,也许会有补充图表、代码细节等,都是可以顺藤摸瓜的
4,直接关注该文献作者的lab的一切网站,以及联系方式
5,文献中通常会有作者的联系方式,可以通过邮件询问作者是否愿意分享代码
6,使用arXiv网站:
arXiv + Catalyzex插件,在arXiv网站上搜索相关文献。
安装Catalyzex插件,它可以帮你显示文献是否有代码链接
7,使用Paper with Code网站:https://paperswithcode.com
Paper with Code网站上的文献通常会附带代码链接,但有时可能难以找到相关领域的文章。
一般是计算机CS代码产出+会议论文会比较多,所以做Bioinformatics+DL+ML+AI之类的要额外关注这些网站
8,Model Zoo:模型代码的集中地
Model Zoo 专注于计算机视觉领域,汇集了大量常用模型的代码仓库。无论是OpenPose还是Detectron,你都能在这里找到对应的实现代码,快速上手学习和研究。
9,Paperweekly:
Paperweekly 是另一个实用的网站,不仅提供论文与代码,还贴心地列出了各领域最新的论文排行榜。更棒的是,它与arXiv无缝连接,方便你查看最新发布的预印本文章。
10,另外对于biology来说:
有些预印本,或者没有收到peer同行审阅的文献也要多看一点,经常去看会有惊喜,比如说https://www.biorxiv.org/
11,Browse state-of-the-art:https://paperswithcode.com/sota
这个网站主要是解决另一个问题——寻找一个领域目前最好的(State of the art, Sota)算法的论文以及实现代码,也算是paperswithcode下的一个子模块
12,google学术的code归档:
https://code.google.com/archive/
13,ResearchCode:https://researchcode.com/
一个很好用的查找论文代码的网站,当您在https://arxiv.org/或Google Scholar中搜索浏览论文时,还可以用http://researchcode.com提供的google chrome扩展程序”ResearchCode code finder“查找代码
14,Code Ocean:https://codeocean.com/
Code Ocean用于创建、共享、发布、保存和重用可执行代码和数据的集中式平台。借助Code Ocean,研究人员可以轻松地分析、组织和执行研究工作,并将其发表到机构库和期刊中。
15,Semantic Scholar | AI-Powered Research Tool
这个网站也可以试试
16,深度强化学习实验室:深度强化学习实验室
在线资源汇总和学习社区,旨在帮助人们更好地了解和学习强化学习(Reinforcement Learning)和深度强化学习(Deep Reinforcement Learning)等领域的知识和技术;
用户可以访问大量的学习资源,例如教程、课程、论文、代码实现等,并且可以通过分类、标签等方式进行查找和筛选
17,figshare - credit for all your research
18,其他:
The most-comprehensive AI-powered DevSecOps platform | GitLab