离散数据点NURBS曲线拟合算法

问题描述:对于离散数据点集来说,其主要特征点一般可以描述原始曲线轨迹的基本形状。对于大量的离散数据点来说,提取主要的特征点后在进行曲线拟合,这样可以降低计算次数,极高拟合效率。

可以描述原始曲线几何形状的 特征点主要有反曲点、曲率极值点和弓高特征点。

提取主要特征点

反曲点:又称拐点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。

对于离散的数据点,相邻两点的法向量夹角值若为\pi,则认为其凹凸性发生了变化。空间中每连续四个刀位点(Q_{j-1},Q_{j},Q_{j+1},Q_{j+2}),可以计算法向量V_{j},V_{j+1},如图1所示,并计算V_{j},V_{j+1}的夹角\theta_{V}。如果\theta_{V}>\theta_{max}(假设\theta_{max}=\pi/2),则曲线的凹凸性发生了变化,将该点作为反曲点,此时法向量V_{j},V_{j+1}的夹角为一个接近于\pi的值。通过遍历所有离散点,即可找到所有的反曲点。计算公式为:\begin{Bmatrix} V_{j} =Q_{j-1}\cdot Q_{j}\times Q_{j}\cdot Q_{j+1} \\ V_{j+1}=Q_{j}\cdot Q_{j+1}\times Q_{j+1}\cdot Q_{j+1} \end{Bmatrix},

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值