【RF回归预测】人工兔算法优化森林算法ARO-RF风电数据回归预测【含Matlab源码 3832期】

在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、人工兔算法优化森林算法ARO-RF风电功率回归预测简介

1 人工兔算法
摘要:人工兔优化算法( [Artificial rabbits optimization,RSO)是 Liying Wang等 于 2022 年提出的一种新型元启发式优化算法 。 该算法受来源于自然界中兔子的生存策略的启发,具有寻优能力强,收敛速度快的特点。

1.1 人工兔优化算法
人工兔优化算法利用真实兔子的觅食和隐藏策略,并通过能量收缩在两种策略之间进行转换。

1.1.1 绕道觅食(探索)
兔子觅食时,总是寻找远的,而忽略了近处的。它们只在其他区域随机吃草,而不是在自己的区域,把这种觅食行为称为绕道 时,兔子很可能会扰乱食物来源以获得足够的食物。因此,ARO的绕道㐍食行为表明,每个搜索个体倾向于向种群中随机选择的另一个 搜索个体更新自己的位置,并增加扰动。

1.1.2 随机躲藏(开发)
为了躲避捕食者,兔子通常会在它的稞穴周围挖一些不同的洞穴来藏身。在ARO算法中,每一次迭代,一只兔子总是沿看搜索空间的每 一个维度在它周围产生 d dd 个洞,并且总是从所有的洞中随机选择一个隐臧起来,以降低被捕食的概率。第 i ii 只兔子的第 j jj 个洞穴由以下公式 产生:

1.1.3 能量收缩(从探索转向开发)
在ARO算法中,兔子在迭代的初始阶段经常进行绕道觅食,而在迭代的后期则经常进行随机隐藏。这种搜索机制是由兔子的能量产生 的,随着时间的推移,兔子的能量会逐渐减少。因此,设计了一个能量因子来模拟从探索到开发的转换过程。

2 随机森林算法原理
随机森林算法是一种集成学习算法,它通过同时使用多个决策树对数据集进行训练,并通过投票机制或平均化方式来得出最终的预测结果。随机森林算法具有很高的准确性和鲁棒性,可以有效地避免过拟合问题,可以处理高维度数据,可以评估特征的重要性。但是,随机森林算法对于少量数据集表现不佳,结果不够直观,训练时间较长,对于分类不平衡的数据集表现不佳。在应用随机森林算法时,需要进行数据预处理、构建随机森林分类模型和模型评估等步骤

3 随机森林算法步骤
步骤如下:
1、从原始数据集中使用自助采样法(bootstrap)随机抽取n个样本,作为新的训练集。
2、随机选择k个特征,建立一个决策树模型。
3、重复步骤1和步骤2,建立多个决策树模型。
4、对于分类问题,采用投票法(majority voting);对于回归问题,采用平均法(averaging)。
5、对新的数据进行预测,将多个决策树的结果进行综合,得到最终的预测结果。

4 蜜獾算法优化森林算法HBA-RF
蜜獾算法是一种基于生物学的启发式算法,模拟了蜜獾在寻找食物和建立巢穴时的行为。而森林算法HBA-RF是一种基于蜜獾算法和随机森林算法的结合,用于解决回归问题。HBA-RF算法的核心思想是通过蜜獾算法对随机森林算法进行参数优化。具体而言,蜜獾算法通过调整随机森林的参数,如决策树的生长速率、树的深度和叶子节点的数量等,来提高随机森林的预测性能。通过这种方式,HBA-RF算法能够更好地适应风电数据的特点,从而提高回归问题的解决效果。

⛄二、部分源代码

%% 基于人工兔优化算法改进的随机森林算法
clear all
clc
rng(‘default’);
%% 导入数据,‘sheet1’
input=xlsread(‘./叶轮数据说明/4米平均风速-风速条件.xlsx’,‘Sheet1’,‘B3:G12002’);
output=xlsread(‘./叶轮数据说明/4米平均风速-状态.xlsx’,‘Sheet1’,‘F3:F12002’);
N=length(output); %全部样本数目
testNum=round(N*0.9); %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
% 随机生成训练集、测试集
k = randperm(size(input,1));
% 训练集——1900个样本
P_train=input(k(1:trainNum)😅‘;
T_train=output(k(1:trainNum))’;
% 测试集——100个样本
P_test=input(k(trainNum+1:testNum)😅‘;
T_test=output(k(trainNum+1:testNum))’;

%% 归一化
% 训练集
[Pn_train,inputps] = mapminmax(P_train,-1,1);
Pn_test = mapminmax(‘apply’,P_test,inputps);
% 测试集
[Tn_train,outputps] = mapminmax(T_train,-1,1);
Tn_test = mapminmax(‘apply’,T_test,outputps);
Pn_train = Pn_train’;
Pn_test = Pn_test’;
Tn_train = Tn_train’;
Tn_test = Tn_test’;

%% 定义北方苍鹰优化参数
pop=20; %种群数量
Max_iteration=30; % 设定最大迭代次数
dim = 2;%维度,即树个数和最小叶子点树
lb = [1,1];%下边界
ub = [50,20];%上边界
fobj = @(x) fun(x,Pn_train,Tn_train,Pn_test,Tn_test);
[Best_score,Best_pos,NGO_curve]=ARO(pop,Max_iteration,lb,ub,dim,fobj); %开始优化
figure
plot(NGO_curve,‘linewidth’,1.5);
grid on
xlabel(‘迭代次数’)
ylabel(‘适应度函数’)
title(‘ARO-随机森林收敛曲线’)
disp([‘寻优得到的树个数:’,num2str(round(Best_pos(1)))])
disp([‘最小叶子节点:’,num2str(round(Best_pos(2)))])
%用得到的最优参数,训练随机树
numTrees = round(Best_pos(1));
minLeafSize = round(Best_pos(2));
model = TreeBagger(numTrees,Pn_train,Tn_train,‘Method’,‘regression’,‘MinLeafSize’,minLeafSize);
Tn_sim1 = predict(model, Pn_train);
Tn_sim2 = predict(model, Pn_test);
% 反归一化
T_sim1 = mapminmax(‘reverse’,Tn_sim1,outputps);
T_sim2 = mapminmax(‘reverse’,Tn_sim2,outputps);
error1 = T_sim1’ - T_train;
error2 = T_sim2’ - T_test;

%% 传统随机森林
model = TreeBagger(20,Pn_train,Tn_train,‘Method’,‘regression’,‘MinLeafSize’,1);
Tn_sim11 = predict(model, Pn_train);
Tn_sim22 = predict(model, Pn_test);
% 反归一化
T_sim11 = mapminmax(‘reverse’,Tn_sim11,outputps);
T_sim22 = mapminmax(‘reverse’,Tn_sim22,outputps);
error11 = T_sim11’ - T_train;
error22 = T_sim22’ - T_test;

%% 结果对比
figure
plot(T_train,‘rs-’,‘linewidth’,1)
hold on
plot(T_sim1,‘b-o’,‘linewidth’,1)
plot(T_sim11,‘k-s’,‘linewidth’,1)
xlabel(‘训练集样本编号’)
ylabel(‘训练集输出’)
title(‘ARO-RF和RF训练集输出’)
axis tight
legend(‘期望输出’,‘ARO-RF’,‘RF’)

%% 结果对比
figure
plot(T_test,‘r*-’,‘linewidth’,1)
hold on
plot(T_sim2,‘b-o’,‘linewidth’,1)
plot(T_sim22,‘k-s’,‘linewidth’,1)
xlabel(‘测试集样本编号’)
ylabel(‘测试集输出’)
title(‘ARO-RF和RF测试集输出’)
axis tight
grid on;
legend(‘真实值’,‘ARO-RF’,‘RF’)
result(T_test,T_sim22’,‘ARO-RF’);
result(T_test,T_sim2’,‘RF’);
% disp([‘RF训练集MSE:’,num2str(mse(error11))])
% disp([‘RF测试集MSE:’,num2str(mse(error22))])
%
% disp([‘NGO-RF训练集MSE:’,num2str(mse(error1))])
% disp([‘NGO-RF测试集MSE:’,num2str(mse(error2))])

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]仝卫国,郭超宇,赵如意.基于改进麻雀算法优化LSSVM的再循环箱浆液密度预测模型[J].电子测量技术. 2022,45(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 27
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值