💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式
🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(高阶版)
②付费专栏Matlab路径规划(进阶版)
③付费专栏Matlab路径规划(初级版)
⛳️关注CSDN Matlab领域,更多资源等你来!!
⛄一、6DOF机械手轨迹规划
六自由度(6DOF)机械手轨迹规划是机器人学中的一个复杂问题,它涉及到机器人的运动学、动力学以及控制理论。6DOF机械手具有六个独立的关节(通常是三个转动关节和三个移动关节),可以实现非常复杂的空间运动。轨迹规划的目的是确定机械手关节随时间变化的位置、速度和加速度,以满足预定的运动任务。
轨迹规划原理和流程大致可以分为以下几个步骤:
1 任务定义:首先明确机械手需要完成的具体任务,包括起始点、经过点和终止点,以及可能的任务约束条件,如关节角度限制、速度和加速度限制等。
2 运动学分析:确定机械手的正向运动学和逆向运动学。正向运动学是从关节角度到末端执行器位姿的映射,而逆向运动学则是从末端执行器位姿到关节角度的映射。这对于确定机械手末端在空间中的确切位置至关重要。
3 轨迹生成:在给定起始和终止位姿的情况下,生成一条从起点到终点的光滑轨迹。这条轨迹需要考虑机械手的动力学和运动学约束,确保轨迹的可行性。常见的轨迹生成方法包括多项式插值、样条插值等。
4 轨迹优化:在轨迹生成的基础上,通过优化算法(如梯度下降法、遗传算法等)调整轨迹参数,以达到特定的性能指标,如最短路径、最小时间、最少能量消耗等。
5 运动控制:将规划好的轨迹转换为控制指令,输入到机械手的控制器中,通过调整各个关节的电机来驱动机械手执行预定的运动。
6 实时反馈与调整:机械手在执行过程中,通过传感器实时监测其状态,并与预定轨迹进行比较,必要时进行动态调整,以确保任务的准确完成。
⛄二、部分源代码和运行步骤
1 部分代码
clear all
clc
%%%%%%%%%%%%%%% Task1: Calculate and plot q, v, a trajectories %%%%%%%%%%%%
fprintf(‘Task1\n’)
fprintf(‘…Calculation of q, v, a Trajectories…\n’)
%J = [q0,qf,dq_m, ddq_m]
J1 = [0,90,8,4];
[tb,T,tf,q,v,a] = TrajectoryTimePlanning(J1);
[tb1,T1,tf1,q1,v1,a1] = deal(tb,T,tf,q,v,a);
J2 = [0,60,4,2];
[tb,T,tf,q,v,a] = TrajectoryTimePlanning(J2);
[tb2,T2,tf2,q2,v2,a2] = deal(tb,T,tf,q,v,a);
J3 = [0,45,6,3];
[tb,T,tf,q,v,a] = TrajectoryTimePlanning(J3);
[tb3,T3,tf3,q3,v3,a3] = deal(tb,T,tf,q,v,a);
J4 = [20,60,10,5];
[tb,T,tf,q,v,a] = TrajectoryTimePlanning(J4);
[tb4,T4,tf4,q4,v4,a4] = deal(tb,T,tf,q,v,a);
J5 = [-10,10,4,2];
[tb,T,tf,q,v,a] = TrajectoryTimePlanning(J5);
[tb5,T5,tf5,q5,v5,a5] = deal(tb,T,tf,q,v,a);
J6 = [30,70,9,4.5];
[tb,T,tf,q,v,a] = TrajectoryTimePlanning(J6);
[tb6,T6,tf6,q6,v6,a6] = deal(tb,T,tf,q,v,a);
t0 = 0;
tf_max =max([tf1,tf2,tf3,tf4,tf5,tf6]);
figure(1)
n = 0;
for j=1:6
n = n+1;
subplot(6,3,n)
plot(linspace(t0,eval(strcat(‘tf’,string(j))), double(3E3)), eval(strcat(‘q’,string(j))), ‘LineWidth’,1.5)
xlabel(strcat(‘t’,string(j),‘(s)’), ‘FontSize’,12)
ylabel(strcat(‘q’,string(j),‘(t)’,‘(’,char(176),‘)’),‘FontSize’,12)
grid on
ax = gca; %returns the current axes (or standalone visualization) in the current figure.
ax.GridColor = [0 0 0];
ax.GridLineStyle = ‘–’;
ax.GridAlpha = 0.5; %grid transparency
ax.Layer = ‘bottom’;
xlim([0,tf_max])
ylim([0,max(eval(strcat(‘q’,string(j))))+10])
yline(max(eval(strcat(‘q’,string(j)))), ‘r–’, ‘LineWidth’, 1.5);
xline(eval(strcat(‘tb’,string(j))), ‘–’, ‘LineWidth’, 1.5);
xline(eval(strcat(‘T’,string(j))), ‘–’, ‘LineWidth’, 1.5);
legend({strcat(‘q’,string(j)),strcat(‘q’,string(j),‘max’)},‘Location’,‘southeast’)
n = n+1;
subplot(6,3,n)
plot(linspace(t0,eval(strcat('tf',string(j))), double(3E3)), eval(strcat('v',string(j))), 'LineWidth',1.5)
xlabel(strcat('t',string(j),'(s)'), 'FontSize',12)
ylabel(strcat('v',string(j),'(t)','(',char(176),'/s)'),'FontSize',12)
grid on
ax = gca; %returns the current axes (or standalone visualization) in the current figure.
ax.GridColor = [0 0 0];
ax.GridLineStyle = '--';
ax.GridAlpha = 0.5; %grid transparency
ax.Layer = 'bottom';
xlim([0,tf_max])
ylim([0,max(eval(strcat('v',string(j))))+1])
yline(eval(strcat('J',string(j),'(',string(3),')')), 'r--', 'LineWidth', 1.5);
xline(eval(strcat('tb',string(j))), '--', 'LineWidth', 1.5);
xline(eval(strcat('T',string(j))), '--', 'LineWidth', 1.5);
legend({strcat('V',string(j)),strcat('V',string(j),'max')},'Location','southeast')
n = n+1;
subplot(6,3,n)
plot(linspace(t0,eval(strcat('tf',string(j))), double(3E3)), eval(strcat('a',string(j))), 'LineWidth',1.5)
xlabel(strcat('t',string(j),'(s)'), 'FontSize',12)
ylabel(strcat('a',string(j),'(t)','(',char(176),'/s^2)'),'FontSize',12)
grid on
ax = gca; %returns the current axes (or standalone visualization) in the current figure.
ax.GridColor = [0 0 0];
ax.GridLineStyle = '--';
ax.GridAlpha = 0.5; %grid transparency
ax.Layer = 'bottom';
xlim([0,tf_max])
ylim([min(eval(strcat('a',string(j))))-1,max(eval(strcat('a',string(j))))+1])
xline(eval(strcat('tb',string(j))), '--', 'LineWidth', 1.5);
xline(eval(strcat('T',string(j))), '--', 'LineWidth', 1.5);
legend({strcat('a',string(j))},'Location','southeast')
end
2 通用运行步骤
(1)直接运行main.m即可一键出图
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2019b
2 参考文献
[1]周东健,张兴国,马海波,李成浩,郭旭.基于栅格地图-蚁群算法的机器人最优路径规划[J].南通大学学报(自然科学版). 2013,12(04)
[2]田疆,李二超.用于无人机三维航迹规划改进连接型快速扩展随机树算法[J].航空工程进展. 2018,9(04)
[3]朱收涛.采用改进粒子群算法的无人机协同航迹规划[J].光电与控制.2012
[4]张航,高岳林.求解带容量约束车辆路径问题的改进蚁群算法[J].宝鸡文理学院学报(自然科学版). 2022,42(03)
[5]龚艺,冉金超,侯明明.基于遗传算法的多目标外卖路径规划[J].电子技术与软件工程. 2019,(10)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置